Overcoming Challenges for Drilling High-Dogleg-Severity Curves

AADE Luncheon
March 22, 2011

Jim Powers
Drilling Application Engineering Manager, Baker Hughes
Content

• Challenges of current drilling systems in unconventional oil & gas applications

• Technology solution:
 – High-build rate Rotary Steerable System
 – Background and principles

• Case Study – Eagle Ford Shale
• Case Study – Granite Wash Tight Sands

• Conclusion and Outlook
Unconventional Hydrocarbon Challenges

- Typical unconventional hydrocarbon drilling applications:
 - 10-14°/100-ft dogleg severity curve and long horizontal section
 - Drilling predominantly with steerable motor systems

- Common Challenges:
 - Toolface Control with high-performance drill bits
 - Low ROP while sliding/ steering
 - BHA trips between curve and lateral (change of motor settings)
 - Tortuous wells complicate completions

- Rotary Steerable Systems promise improvements
 - Current systems not fully fit-for purpose
Addressing Drilling Challenges with RSS

- Benefits of rotary steerable drilling proven in complex well profiles and long lateral sections:
 - Better drilling performance and lower risk with constant drill string rotation
 - Easy steering control via surface command
 - Better wellbore placement and horizontal reach
 - Improved wellbore geometry facilitates completions and production

- Constraints:
 - Commercial RSS for 5-8°/100-ft build rates
 - Small leases on land require higher BUR
 - Today: Curve drilled with Motor, lateral with RSS

- Need for high build-rate RSS to drill curve and lateral in one run
The Technology Concept

• High build-rate RSS technology requirements:
 – Increase bit deflection and BHA flexibility
 – No compromise of reliability and performance rating
 – Conserve good steering control and good hole quality

• Solution Principles:
 – Highly reliable rib-steering system with modified geometry
 – Actuators decoupled from string rotation
 – Dedicated drill bit design
 – Increased flex section in BHA
High-Build Rate RSS Components

• Bottomhole Assembly:

 - Engineered gage geometry and side-cutting properties
 - Depth-of-cut control features
 - Balance of aggressiveness and stability
 - High drilling performance and good hole quality

• Specific PDC Drill Bit:
 - Engineered gage geometry and side-cutting properties
 - Depth-of-cut control features
 - Balance of aggressiveness and stability
 - High drilling performance and good hole quality
Case Study I – Eagle Ford Shale

• Challenges
 – Inconsistent BUR in curve interval
 – Low ROP’s in Slide
 – PDC Bit Vibrations, High Stick-Slip, High Torque
 – Staying in Zone while Drilling Lateral
 – Hole Cleaning, Balling
 – Wellbore Stability, Pack Offs, Stuck
Eagle Ford Well #1 – Well Profile

- High-Build rate RSS, Well #1:
 - Kick-off at 8,500-ft MD
 - Build curve at 8°/100-ft
 - Left turn at 1.5°/100-ft turn rate
 - Target Inclination 89°, 6.370-ft lateral section

- Offset Well benchmark:
 - Steerable motor assembly in curve and part of lateral
 - Motor-powered standard RSS in majority of the lateral
Eagle Ford Well #1 – High-Build Rate RSS Results

- Drilled 6,970 ft from kick-off to TD in single run
- Consistently met 8°/100-ft DLS requirement
- Saved 4.7 drilling days (40%) vs. offset
- Superior hole quality

<table>
<thead>
<tr>
<th>MD</th>
<th>Inc.</th>
<th>Azi</th>
<th>TVD</th>
<th>Vert Sect</th>
<th>DLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ft]</td>
<td>[°]</td>
<td>[°]</td>
<td>[ft]</td>
<td>[ft]</td>
<td>[°/100ft]</td>
</tr>
<tr>
<td>8647</td>
<td>6.2</td>
<td>199</td>
<td>8644.09</td>
<td>-78.24</td>
<td>8.13</td>
</tr>
<tr>
<td>8679</td>
<td>10</td>
<td>199.4</td>
<td>8675.76</td>
<td>-73.97</td>
<td>11.88</td>
</tr>
<tr>
<td>8711</td>
<td>12.7</td>
<td>196</td>
<td>8707.13</td>
<td>-67.94</td>
<td>8.69</td>
</tr>
<tr>
<td>8743</td>
<td>15</td>
<td>191.1</td>
<td>8738.2</td>
<td>-60.48</td>
<td>8.06</td>
</tr>
<tr>
<td>8775</td>
<td>17.2</td>
<td>186.2</td>
<td>8768.95</td>
<td>-51.7</td>
<td>8.07</td>
</tr>
</tbody>
</table>
Eagle Ford Well #1 – Borehole Quality

- Offset wells (steerable motor systems):
 - High tortuosity - high friction
 - Lubricant required to drill out plugs after fracturing
 - Additional completion cost

- High build-rate RSS well:
 - Smooth profile
 - No need for additional lubricant
 - Reduced time to drill out plugs
 - Significant reduction in completion cost
Eagle Ford Well #2 – Well Profile

• High-Build rate RSS, Well #2:
 – Kick-off at 8,582’ MD
 – Combined build & left turn in curve section
 – Build rate 10°/100’, turn rate 1.5°/100’
 – Target Inclination 91.6°, 5,500-ft lateral section

• 4 Offset wells:
 – Steerable motor assemblies in all curve sections
 – Standard RSS with and without motor addition in laterals
Eagle Ford Well #2 – High-Build Rate RSS Results

- Drilled Curve and lateral to 14,187-ft MD
- Well profile drilled to plan
- Met/ Exceeded required 10°/100-ft DLS
- Saved 2.64 days (25%) vs. best offset well, despite one trip
Case Study 2 – Granite Wash Tight Sands

- Challenging sequence of interbedded sandstones, silts, and shales

- Steerable Motor experience:
 - High bend settings to achieve BUR
 - Difficult toolface control
 - Limited rotary RPM
 - Unacceptable ROP

- Conventional RSS:
 - BUR limited to ~4°/100-ft
 - Inconsistent directional performance
Granite Wash – Well Profile

- Drill curve and lateral with PDC bit
- Improve penetration rates
- Land curve at 89.4°, 12,158-ft TVD
- Build rate: 10°/100-ft
- 3,926-ft lateral section
Granite Wash – HBUR RSS results

- Drilled curve and part of lateral until bit trip
- Met 10°/100-ft BUR requirement
- Drilled precisely to well plan
- 28% ROP improvement vs. best offset (from 18 to 23-ft/hr)
- 47% cost per foot improvement vs. best offset

<table>
<thead>
<tr>
<th>MD</th>
<th>Inc.</th>
<th>Azi.</th>
<th>TVD</th>
<th>Vert Sect</th>
<th>DLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ft]</td>
<td>[°]</td>
<td>[°]</td>
<td>[ft]</td>
<td>[ft]</td>
<td>[°/100ft]</td>
</tr>
<tr>
<td>11505</td>
<td>8.2</td>
<td>192.5</td>
<td>11503.54</td>
<td>35.73</td>
<td>10.27</td>
</tr>
<tr>
<td>11536</td>
<td>11.4</td>
<td>191.8</td>
<td>11534.09</td>
<td>40.88</td>
<td>10.33</td>
</tr>
<tr>
<td>11568</td>
<td>14.5</td>
<td>190.8</td>
<td>11565.27</td>
<td>47.9</td>
<td>9.71</td>
</tr>
<tr>
<td>11599</td>
<td>17.3</td>
<td>190</td>
<td>11595.08</td>
<td>56.23</td>
<td>9.06</td>
</tr>
</tbody>
</table>
Conclusion and Outlook

• Successful collaboration between operators and service provider to address drilling challenges

• High-Build rate RSS concept proven:
 – Dedicated component, BHA and drill-bit design
 – Consistent BUR >8-10°/100-ft
 – Curve and lateral drilled with one BHA
 – Improved drilling performance
 – Precise Steering per well plan
Conclusion and Outlook

• Straight tangents and smooth curves reduce completion time and cost:
 – Trouble-free casing runs
 – Optimized plug & perf process

• Outlook:
 – Further expand RSS build-rate capabilities
 – Optimize BHA and application-specific drill bit for further drilling performance increase
Thank You!

Questions?