Mississippi Lime Drilling Team

- Mitch Elkins
- Terry Leeper
- Mike Jagneaux
- Daniel Habenicht
- Ian West
- Cody Martin
- Charles Patrick
- Jill Fuller
- Chelce Rouse
- Jacque Croudy
- Larry Rader
Mississippi Lime Overview

Miss. Lime Core Area

Anadarko

Gulf Coast Onshore
Mississippi Lime Overview

- Acquired Eagle Energy acreage in 2012
- First Midstates drilled well in 2013
- Design and operational changes in 2014
- Capital efficiency in 2015
Mississippi Lime Overview

Cherokee Shale

Mississippian Lime Potential Target Intervals
Design Initiative – Addressing The Problem

Design Directives:
- Maintain full-section laterals (± 4,900’)
- Place ESP as low as possible in wellbore to reduce hydrostatic head at intake
- Pad drill wells to utilize existing infrastructure (location, tanks, SWD)

Issues:
- High incident rate of stuck pipe from packoff events
 • How can we change design to mitigate wellbore instability?
- High incident rate of catastrophic downhole tool failure
 • How can we adjust operational procedures to mitigate catastrophic failures?
The Problem - Stuck Pipe

Stuck pipe frequency by depth

Packoff events in the curve
The Problem – Stuck Pipe

- Cherokee Shale is predominately Illite Clay
 - Extremely dispersive shale
The Problem – Stuck Pipe – Caliper Log

20”+ Hole

5’ TVD

Gauge Hole
The Solution – Stuck Pipe

- Cherokee Shale is predominately Illite Clay
 - Extremely dispersive shale
 - Tangent was drilled for 200’ in the Cherokee Shale
 - Approx. 50° - 60° Tangent Angle

- Changed ESP tangent angle to 75°
 - Reduced exposure to dispersive shale
 - Maintained lower hydrostatic head for Production at intake
 - Pushed tangent downhole changed lithology
 - Tangent now drilled in top of the Mississippi Lime

- Sodium Silicate WBM
 - Chemical inhibition to shale – similar inhibition to OBM
 - Drill gauge hole through curve for better cleaning

 Ultimately, changing tangent angle was more beneficial than Silicate WBM
The Curve and Hole Cleaning – Casing Time

Casing run times prior to tangent adjustment and Hole Cleaning initiative

<table>
<thead>
<tr>
<th>Bin</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.851487765</td>
<td>0</td>
</tr>
<tr>
<td>0.40109149</td>
<td>0</td>
</tr>
<tr>
<td>6.653670745</td>
<td>3</td>
</tr>
<tr>
<td>12.90625</td>
<td>26</td>
</tr>
<tr>
<td>19.15882926</td>
<td>14</td>
</tr>
<tr>
<td>25.41140851</td>
<td>3</td>
</tr>
<tr>
<td>31.66398777</td>
<td>1</td>
</tr>
<tr>
<td>More</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>12.90625</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>6.252579255</td>
</tr>
</tbody>
</table>

Histogram for 7" Casing Run Time

7" Casing Run Histogram

- Frequency
- Average
- \(\sigma \)
- \(\sigma \)
The Curve and Hole Cleaning – Casing Time

Histogram for H2 7" Casing Run Time

<table>
<thead>
<tr>
<th>Bin</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.738355272</td>
<td>0</td>
</tr>
<tr>
<td>5.857767151</td>
<td>0</td>
</tr>
<tr>
<td>7.97717903</td>
<td>4</td>
</tr>
<tr>
<td>10.09659091</td>
<td>19</td>
</tr>
<tr>
<td>12.21600279</td>
<td>13</td>
</tr>
<tr>
<td>14.33541467</td>
<td>7</td>
</tr>
<tr>
<td>16.45482655</td>
<td>1</td>
</tr>
<tr>
<td>More</td>
<td>0</td>
</tr>
</tbody>
</table>

Average: 10.09659091
Standard Deviation: 2.119411879
The Curve and Hole Cleaning – Casing Time

- Changed ESP tangent angle to 75°
 - Reduced exposure to dispersive shale
 - Maintained lower hydrostatic head for Production at intake
 - Pushed tangent downhole changed lithology
 - Tangent now drilled in top of the Mississippi Lime

- Reduced 7” Casing Time Average and Train Wrecks!
 - Average running reduced 2.8 hours
 - Previous average was 12.9 Hours
 - New average is 10.1 Hours
 - Longest casing run was 13.5 hours
 - No pulled casing strings!
 - Previous longest casing time was 41 Hours
 - Pulled casing and multiple conditioning runs
The Problem – Catastrophic DHT Failures

- DHT failures were persistent issues
 - Catastrophic failures – resulting in sidetracks
 - Near-catastrophic – success retrieving tools
 - Undiagnosed failure – TOOH for new assembly

- Why were so many tools breaking?
The Problem – DHT Failure Cost

Cost vs. Directional Tool Failure Date of Incident

Catastrophic Failures

- 16 -
The Solution – Catastrophic DHT Failures

- DHT failures were persistent issues
 - Catastrophic failures – resulting in sidetracks
 - Near-catastrophic – success retrieving tools
 - Undiagnosed failure – TOOH for new assembly

- Why were so many tools breaking?

- Implement DHT guidelines and procedure rollout
 - Clearly define the issue at hand
 - Clearly state the operational parameters
 - Training, training, training!
 - Engineer, Company Man, driller, and DD **MUST** work together!

- Document failures
 - Learn from the mistakes
 - Keep it in the open so it’s not forgotten!

- “It’s not the hole you make, it’s the hole you keep!”
The Solution – DHT Failures

Cost vs. Directional Tool Failure Date of Incident

Directional tool failure analysis and action plan instituted
Address capital efficiency

Mitigate slow ROP and “yo-yoing” in high chert areas

Work diligently to “stay in pay”

Proactive measures during a runaway cost scenario
Thank you for listening

Questions?