Ryder Scott Company
Introduction to
Incorporating Uncertainty in Resource Estimates

Larry Connor
May 5, 2016
Uncertainties in the Oil and Gas Industry

Geology & Engineering
- Volumes in Place
- Recovery of in Place Volumes
- Production Rate/Volume forecasts
- Cashflow Projections

Product Market
- Volatility in oil and gas prices
 - Lower project revenue
 - Longer development period
 - Higher economic limits and lower reserve volumes
 - Lower shareholder value and return on investment

Operations
- Blowout, casing or tubing collapse, loss of wellbore
- Equipment breakdown, availability
- Weather delays

Monetary Risk
- Inflation / Foreign currency exchange rates
- Capex
- Opex
- Creditors
Uncertainties in the Oil and Gas Industry

• With lower oil prices it is critical to incorporate the uncertainties into business decisions

• Of all decisions that executives make, choosing between optional investment opportunities is often the most difficult

• Important to use consistent evaluation techniques that provide a better understanding of potential outcomes of investment decisions
 • Which one provides the greatest return for the amount of risk?
 • How do you determine how much risk is in an opportunity?
 • How can you determine the most critical elements?

• **Deterministic** or **Probabilistic** method
Deterministic
Most common method used in the industry
- Evaluate petrophysical attributes (porosity, thickness, saturations, permeability, skin, etc.)
 - Logs, core
 - Pressure transient analysis
 - Flow tests
- Evaluate geophysical data (reservoir size and limits)
 - 2D, 3D seismic
 - Other prospecting data
- Construct structure and isopach/isochore maps
- Planimeter volumes
- Assign Recovery Factor

Easily understood and widely accepted.

Does not incorporate uncertainty, only presents a single potential outcome based on fixed input variables.
Evaluation Methodologies under SPE-PRMS
Evaluation Methodologies under SPE-PRMS
Evaluation Methodologies under SPE-PRMS
Advantages of Deterministic Methodology
- Well known methodology
- Widely accepted
- Easy to apply and understand

Disadvantages
- Does not fully or correctly incorporate uncertainty
 - Could create high case and low case using different input parameters
 - too optimistic on high case
 - Too pessimistic on low case
 - Just not correct
Probabilistic
Used in the industry but not as common in conventional, very popular in unconventional

- Evaluate petrophysical attributes (porosity, thickness, saturations, permeability, skin, etc.)
 - Logs, core
 - Pressure transient analysis
 - Flow tests
- Evaluate geophysical data (structure size)
 - 2D, 3D seismic
 - Other prospecting data
- Construct distributions for each variable
 - More common: triangular, normal, lognormal
Probabilistic

- Calculate volumes using stochastic volumetric model
- Assign distribution to Recovery Factor
- Calculate the Geologic Chance of Success

Presents a range of expected outcome
Incorporates uncertainty
Evaluation Methodologies under SPE-PRMS

Probabilistic

• Estimate the Geologic Chance of Success
 • Conventional reservoirs
 • Source Rock = .85
 • Timing and Migration = .8
 • Trap = .7
 • Reservoir = .62
 • Total COS = 30%
 • Unconventional reservoirs
 • Presence of shale = 1.0
 • Organics – proper Total Organic Content = 1.0
 • Thermal Maturity – vitrinite reflectance = .7
 • Brittle Lithology – low clay content – high silica = .8
 • Continuity of oil shale = .8
 • Total COS = 45%
Evaluation Methodologies under SPE-PRMS

Probabilistic – incorporating the Chance of Success

Risk Analysis of Exploration Prospects
Probabilistic – incorporating the Chance of Success
Probabilistic

- Calculate volumes using stochastic volumetric model
 - Distributions assigned for input parameters:
 - Area
 - Gross Thickness
 - Net to Gross Ratio
 - Porosity
 - Fluid Saturation
 - Formation Volume Factor
 - Recovery factor

- Covariance between variables
 - Porosity ~ Water saturation
 - Area ~ Net thickness
 - Recovery Factor ~ Net to Gross thickness
Evaluation Methodologies under SPE-PRMS

Probabilistic

- Project Recoverable Volumes using Arps decline equations
 - Distributions assigned for input parameters:
 - Initial rate
 - Decline rate
 - Hyperbolic b factor
 - Minimum decline rate
 - Secondary product yields (Gas – Oil ratio) or (condensate – gas ratio)
 - Covariance between variables
 - Initial Rate ~ Decline Rate
 - Initial Rate ~ Net Thickness
 - Initial Rate ~ Pressure
Evaluation Methodologies under SPE-PRMS

Probabilistic

- Calculate economic value using stochastic model
 - Distributions assigned for input parameters:
 - Product prices
 - opex
 - capex
 - Covariance between variables
 - Product prices ~ opex
 - Product prices ~ capex
 - Capex ~ Initial Rate
Evaluation Methodologies under SPE-PRMS

Probabilistic

• Results in a range of outcomes
 • Original Volumes in Place
 • Recoverable Volumes
 • Economic Value – Net Present Value
 • Opex
 • Capex

• Allows Managers to understand and incorporate uncertainties
 • Better decisions
 • Positions company for better profitability
Evaluation Methodologies under SPE-PRMS

Probabilistic

- Where can you use it?
 - Determine most likely outcome of a workover campaign
 - Which is the most cost efficient workover
 - Shale Prospect Analysis
 - Undiscovered Conventional Reservoir Prospect Analysis
 - Exploration of Undrilled Acreage
 - Infill drilling
Evaluation Methodologies under SPE-PRMS