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Abstract

Deepwater operations are inherently expensive, but
thorough and comprehensive pre-well planning can aid in
reducing drilling costs. Information from computer
modeling of casing, drill string and bit design is invaluable
for making informed decisions that can effect the success
of the drilling operation. Important design considerations
for reducing drilling costs are maximizing rates-of-
penetration (ROP), minimizing equivalent circulating
densities (ECD’s) and optimizing pressure losses in the
circulating system. The well planner analyzes various
combinations of ROP, flow rate and drilling fluid properties
with each casing, drill string and bit configuration. This is a
very time-consuming and data intensive process, the
accuracy of which is influenced by the computer model
and analysis techniques used.

This paper reviews the use of engineering software for
well planning and drilling operations. Information is
presented from two deepwater wells drilled in the Gulf of
Mexico. New analysis techniques were developed
specifically for well planning in these types of wells.
Innovative communications technology allows simulations
created onshore in the planning phase to be transferred
offshore for use in the execution phase.

Introduction

The significant technical challenges of drilling in deepwater
are complicated by the sensitivity of the preferred drilling
fluid to the drilling environment.  Synthetic-based muds
(SBM) are the fluid-of-choice for deepwater operations
because they consistently allow operators to realize
significant reductions in overall well costs. These savings
result from reductions in bit trips, improved borehole
stability, increased rates of penetration and, in some
cases, the elimination of casing strings.

Despite their considerable technical merits, synthetic-
based driling muds are not always trouble-free. The
occurrence of lost circulation when using SBM is a major
concern for deepwater operators. Excessive losses of
mud volume can temporarily shut down drilling operations
and add a tremendous expense to overall well cost.

Modern computer technology has enabled the design
sophisticated  hydraulics models for engineering
applications. Hydraulics and hole cleaning models are

extremely important for ensuring success when drilling
complex wells. Deepwater and high temperature/high
pressure (HT-HP) wells are particularly challenging and
pre-well modeling can be an enormous asset towards
project success.

Modeling Considerations

Drilling hydraulics are analyzed at actual downhole
conditions, whether in deepwater where circulating
temperatures are typically below 200° F or in high
temperature/high pressure wells, where temperatures may
exceed 400° F. Temperature and pressure effect both the
rheology and density of drilling fluids, particularly invert-
emulsion drilling fluids. These parameters are corrected
for local conditions before an overall integrated prediction
of downhole pressures is performed.

Important modeling considerations have been identified
for deepwater and HT-HP wells and, because their
importance cannot be over-emphasized, they will be
reviewed in this paper. These critical considerations
are:?3

* temperature model,

» HT-HP rheological model,

e density model,

* compositional model,

» finite-difference analysis (hydraulic grids)

* hole cleaning analysis and

» swab/surge analysis

Temperature Model

Predicting annular temperatures is not a trivial task and
thermal conditions inherent to deepwater wells add to the
challenge. These wells exhibit dual gradients: a negative
gradient exists from surface to the mud line (water
column), followed by a positive gradient below the mud
line. When initiating circulation after periods of static
conditions, the annular temperature profile changes after
the volume of mud exposed to the cold water column
opposite the riser is incorporated into the circulating
system.

Another condition unique to deepwater arises from
boosting the riser. Here, cooler mud from surface
continually enters the riser and alters the circulating
temperature profile within the mud column. Variations in
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the frequency and rate at which boosting occur
complicates predictions of circulating temperature and
pressure profiles. Other examples include drilling
operations characterized by multiple gradients such as
drilling through salt domes. Deepwater wells drilled
through a salt dome can have four temperature gradients.

Temperature models fall into two categories, either
steady state or dynamic. Most programs use a steady
state model. A detailed discussion on temperature models
is beyond the scope of this paper, although some
important variables merit mention. These include heat
capacity and heat transfer coefficients of the formation and
drilling fluid, geothermal gradients, mass flow rate and the
viscosity and density of the drilling fluid.

Modern hydraulics models characterize downhole
temperatures by direct calculation, or by allowing the user
to define a temperature profile. Steady-state models
calculate the profile after extended periods (steady state),
such as when geothermal equilibrium is reached and
annular temperatures have stabilized. Dynamic models
simulate changes in downhole temperature and pressures
as a function of time. Regardless of the type of
temperature model used, an accurate temperature profile
is the single most important parameter for accurate
analysis of downhole pressure.

The temperature model used in this paper calculates
downhole temperature profiles based on the conservation
of energy within a control fluid volume. This is done within
the drill string, annulus and the formation.”

The equation for conservation of energy for a control
volume inside the string is:
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Initial and boundary conditions are required to solve
these equations.

HT-HP Rheological Model

The rheological properties of SBM change under downhole
conditions. Bottom-hole pressures on deepwater wells
can approach 20,000 psi, and mud line temperatures in
the Gulf of Mexico can be as low as 35° F. A HT-HP
viscometer such as the FannO Model 70/75 measures
downhole rheological properties under these conditions.
The accuracy of rheological modeling improves with

greater numbers of pressure and temperature
combinations. Ideally, these combinations should mirror
actual annular conditions to facilitate interpolation between
data points and minimize errors. Input data should cover
the whole of the 2-dimensional space defined by the range
of pressure and temperature to avoid partial extrapolation.
Extrapolating data outside of the range of the HT-HP
rheology matrix increases error.

Shear viscosity is calculated at each dial reading using
3-dimensional interpolation. A bi-cubic spline method is
used when a square matrix of HT-HP temperature and
pressure data is available. In the case of fewer readings,
pre-defined equations embedded in the program surface-fit
Fann 70 dial readings as a function of pressure and
temperature.

Density Model

The model corrects the density of the base fluid by
calculating the change in density as a function of local
pressure and temperature. The compressibility of a base
fluid at a known temperature follows this general equation:

AV

Y/
Compressibility = ———
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Equations derived from pressure-volume-temperature
(PVT) data calculate density as a function of temperature
and pressure. Figures 1-2 show the dependency of
density with pressure and temperature of a typical SBM
base fluid.*

Compositional Model

A compositional model calculates mud density using PVT
characteristics of the liquid fraction. Due to the
compressible nature of base fluids, an accurate reference
temperature and pressure (usually atmospheric) for initial
mud density is required.

Each base fluid has a characteristic equation to define
PVT behavior. The finished mud is described as the
composition of various liquid and solid fractions, expressed
as the percentage of each component. The following
equation calculates the local density by considering5 the
individual changes in density of each fluid component.>®

2o fi+2 o
. <
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i=1

The subscript “i* indicates the “n* liquid components,
while “” indicates the solid components. The_index “x”
indicates the density of fluid “” at local pressure and

temperature.
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Finite-Difference Analysis (Hydraulic Grids)

The benefits of calculating temperature, density and
rheological properties under downhole conditions are lost
unless these properties are continually updated throughout
the wellbore. This requires the wellbore to be divided in
grids or segments to allow for finite-difference
mathematical analysis of these parameters under local
conditions.

The accuracy of these calculations improves when the
maximum grid length is less than 100 feet. Changes in the
drilling assembly, well bore geometry or survey further
reduces the grid length. Downhole properties such as
rheology and density are calculated within each grid and
used as initial conditions in the next grid. A finite-
difference technique is used for hydraulics analysis in
these segments, and numerical integration is used to
calculate cumulative pressures.

Calculations for temperature, pressure, rheology and
pressure loss are performed at each grid, but are
populated from different sources. This is done because
some analysis parameters are independent, while others
are inter-related. The temperature in each grid is not
dependent of other grids and, therefore, it is taken directly
from the temperature profile. On the other hand, pressure,
rheology and local density are inter-related and dependent
upon previous grids. Numerical integration techniques are
required to calculate the cumulative effects of these
properties. The local density of the SBM in each grid is
calculated using temperature and pressure conditions
within that grid, whereas the equivalent static density
(ESD) is the cumulative hydrostatic pressure acting from
all grids. Temperature and pressure updates in a
hydraulic segment are shown in Figure 1.

The following section illustrates the iterative solution
procedure required to update parameters within each
hydraulic segment. The calculation of ESD uses the
following equation:

= pstatici
' g TVD,
The static pressure is calculated with the equation

dp=p(p,T)gdz

Due to the dependency of the density on the pressure,
the equation is solved iteratively.

Pia :p(pi ’T)gATVDHl

The ECD calculation considers
frictional pressure losses
circulating pressure.

the generalized
(dpf) when calculating the

pcirculati ngj
g TVD,
The circulating pressure is calculated using equation:

ECD, =

dp=p(p.T) g dz+dp, (o(p,T).Re)dx
Iterative techniques are used when solving this

equation because of the dependency of density on
pressure.

P =p(p, T)gATVD,, +
dp, (o(p, . T).Re, )AMD,

dps represents the frictional pressure loss equation.

Hole Cleaning Analysis

An important economic benefit that operators realize from
the use of SMB in deepwater is high rates-of-penetration.
Typically, operators wish to drill out of 20" casing with a 17
V2" bit using SBM. The combination of large hole
diameters and high rates-of-penetration can potentially
lead to disaster due to high volumes and rates that
cuttings are generated. At risk in these situations are
gains made towards ECD management and reducing lost
circulation.

Hole cleaning analysis is a critical technology for
annular pressure management in deepwater wells. This
analysis predicts and optimizes flow rates needed for hole
cleaning. It also calculates concentrations of transported
cuttings and bed heights within each grid. The hole
cleaning model is based on the balance of forces acting on
cuttings in the annulus.” Three modes of cutting
movement are distinguished:

» Settling - Cuttings move downwards due to the
gravitational force acting against buoyancy and the
drag force.

+ Lifting - A cyclic motion of moving cuttings in the
area of high fluid velocity due to lift and buoyancy
forces, followed by settling.

* Rolling - Cuttings roll on the lower side of the
annulus when lift and drag forces exceed
gravitational and plastic forces.

This model provides the drilling engineer with a useful
tool for identifying areas in the wellbore where problems
related to hole cleaning may occur. Input parameters
include cutting size and density, mud weight and rheology,
ROP, survey, drill string, wellbore geometry and flow rate.
The model uses a force balance analysis within each grid
and identifies the most difficult grid for hole cleaning.
Examples include the riser (settling mechanism), the build
section (lifting mechanism) and the lateral or horizontal
section (rolling mechanism).

Well Planning Phase

An important goal of the pre-well planning process is to
balance the economic benefits derived from the use of
SBM against the technical challenges found in deepwater.
The role of the drilling fluids provider in the well planning
process has evolved such that the provision of hydraulics
analyses has become a basic service. Generally, the well
planner establishes the potential for lost circulation arising
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from use of SBM in this narrow pressure environment by
comparing predicted ECD to the pressure gradient. Other
equally important parameters evaluated during well
planning include:

* mud property optimization,

» casing string design,

*  drill string design,

» bit design,

* survey,

» surface limitations (SPP and mud pumps),

* ROP optimization,

» hole cleaning analysis and

* swab/surge analysis

These parameters can be evaluated independently;
however, they rarely act in isolation during the drilling
process. For example, ECD is influenced by flow rate,
mud properties, rate-of-penetration and annular cuttings
load. Similarly mud properties, flow rate, bit nozzles, and
drill string designs are some of the variables effecting
surface pressures. The engineering software presented in
this paper is part of the Advantage V' System, an
enterprise database system for well planning, well site
reporting and engineering analysis. This is a modular
platform and can be used stand-alone or networked
among integrated services such as drilling fluids, surface
logging, MWD, pressure/dynamics, drilling systems and
directional drilling.

During pre-well planning, the well planner collected a
detailed list of contractor-supplied equipment prior to
designing drilling assemblies for each section. This list
included mud pumps and liner sizes, rated working
pressures on liners, allowable working pressures for each
liner and tubular specifications. The operator provided
expected pore pressure and ROP information. The
proposed SBM was tested extensively, including Fann 70
rheological testing, and the collective drilling fluid and
operational information was combined and used to predict:

* maximum standpipe pressure,

* Dbit TFA,

* minimum surface mud weight,

* annular, drill string and bit pressure losses,

» ECD at various combinations of flow rate and ROP,

» flow rates required for hole cleaning, and

+ intervention techniques for hole cleaning,

Planning considerations for Wells A & B are presented
in Table 1. The well planner designed the hydraulic
system using 5.5” drill pipe and a rig-imposed surface
pressure limitation of 4200 psi. The expected fracture
pressure at casing point was 10.9 and 12.5 lbm/gal
equivalent mud weight for the 177 and 12-'4" sections,
respectively. Hydraulics and hole cleaning were modeled
at ROP of 100 and 150 feet/hour.

A pre-well analysis of the proposed 17” section of Well

A appears in Figure 4. The top portion of the figure is a
spreadsheet, based on HT-HP analysis, detailing pressure
losses within the circulating system. This spreadsheet and
the accompanying graphic were developed specifically for
comprehensive HT-HP analysis of pressure losses, bit
hydraulics and hole cleaning efficiency during well
planning. The user defines an operating flow rate and a
decrement of flow rate. Afterwards, the hydraulics
parameters are calculated, tabulated and presented
graphically at 10 decrements of flow rate. For example,
the operating flow rate in Figure 4 is 1050 US
gallons/minute and the decrement of flow rate is 25 US
gals/min. These parameters were calculated and graphed
over this range of flow rates. Calculated data includes
standpipe pressure, ECD at bit and casing shoe, drill
string, bit and annular pressure losses, impact force,
hydraulic horsepower and jet velocity. The program also
calculates the bit TFA required to maximize SPP at each
flow rate, with accompanying bit hydraulics.

The information presented in Figure 4 was based on an
average ROP of 100 feet/hour. This data, compared to the
information in Table 1, indicates that surface and fracture
pressure limitations are not exceeded at a maximum flow
rate of 1050 US gals/min. Using a bit TFA of 1.7 inch?, the
SPP and ECD (at casing shoe) are 4121 psi and 10.64
Ibom/gal, respectively. The bit TFA would have to be
reduced to 1.5227 inch® to maximize SPP when operating
at 1050 US gals/min.

Figure 5 presents similar information based on
modeling performed in the 12-14” section of Well A at an
average ROP of 100 feet/hour. The expected surface mud
weight at total depth in the 12 4" section was 11.9 lbm/gal.
Hydraulic analyses of the circulating system were modeled
at flow rates ranging from 850 to 625 US gals/min without
exceeding surface and casing shoe pressure limitations.

The drilling engineering requested modeling at higher
flow rates in the 17” section of Well B. An initial flow rate
of 1200 US gals/min and decrements of 50 US gal/min
were modeled for this well using a surface mud weight of
10.4 Ibm/gal. Changes were made to the proposed drill
string, including motors and MWD, resulting in higher drill
string pressure losses compared to Well A. Consequently,
surface pressure ratings were exceeded at flow rates
above 900 US gals/min (Figure 6). An average ROP of
150 feet/hour was used in the 17” section of Well B.

The 12 '4* section of Well B was modeled at an
average ROP of 150 feet/hour and with an expected mud
weight at total depth of 11.6 Ibm/gal. The maximum flow
rate expected in the section was 850 US gals/min.
Modeling results presented in Figure 7 indicate that
surface and annular pressures at these flow rates would
not exceed the constraints from Table 2. However, the
graphical portion of Figure 7 indicates that a minimum flow
rate of 750 US gals/min is required for hole cleaning in this
section.

The driling engineer used this information in final
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planning of well design. This information was also used
for determining if additional equipment, such as larger drill
pipe, circulating subs or downhole tools was needed to drill
these wells.

Case Transfer Mechanism

Information and data in the computer model is stored in
local or networked databases in the form of an engineering
case. An innovative communications technology, the case
transfer mechanism, provides the user with access to data
sets stored in the data tables. This function allows the
user to import and edit actual data or input hypothetical
data and then use it to create "what if" scenarios. One can
then save this special-use data as an engineering case.

Case transfer technology deals primarily with
Microsoftl] data shaping, a hybrid of SQL. This allows the
user to create hierarchical data by querying all related
engineering data using header information from a selected
ODBC-connected database. Database transactions use
Microsoft's ADO data access layer. Case data is persisted
into a standard format known as XML, or extendable mark
up language. The XML format consists of two parts; 1) the
XML schema, which describes the position of the data in
the file and 2) the data as it appears in the database.

A benefit of using XML as the file format is the ease in
which data may be migrated into third party applications
and transmitted through the 80 port. Microsoft ADO has
the native ability to read an XML file directly, which allows
the user to create a connection to a SQL server database
and load the engineering case. With this process, the data
remains in a pure form from export to import, which
decreases the possibility of corruption during transfer.

Multiple onshore & offshore users share engineering
cases using electronic mail, a network or through the
Internet. Floppy disks or CD-ROM are used to transport
cases when electronic transfer is unavailable.  This
process eliminates duplication of efforts and ensures
accuracy and efficiency of knowledge transfer.

Drilling Phase

Hydraulics analyses performed during well planning were
based on expected conditions and contained many
unknowns. The drilling process is very dynamic and rarely
do planned conditions mirror reality. Since the circulating
system is an integral part of this process, there is
tremendous value in performing hydraulics analyses under
actual conditions. With this in mind, dedicated hydraulic
engineers worked with the mud engineer and pressure tool
provider during the drilling phase. Hydraulics modeling
conducted at the rig site after displacing to SBM showed
good correlation in ECD when compared to the INTEQ
DCP pressure tool (Figures 8 & 10). Predicted ECD’s
were consistently were within 0.1 lbm/gal of the DCP
pressure tool value. Poor correlation between predicted
and acutal ECD occurred initially in some hole intervals
because annular temperature profiles were not well

defined. Modeling errors decreased with better definition
of the annular temperature profile.

After establishing correlation between predicted and
actual annular pressures, the engineer forecast trends, or
“look ahead” scenarios, 300 feet in advance of the bit.
This information was used to predict pressures and hole
cleaning efficiency at casing points. It was also useful
when making decisions concerning tripping when tools
failed, timing of sweeps for hole cleaning intervention and
calculating ESD before tripping pipe. In addition, the
engineer compared predicted and actual surface
pressures (Figure 9 and 11).

Hole cleaning modeling was routinely conducted at the
rig-site using actual ROP and flow rates. The hole
cleaning models alerted drilling personnel to potential hole
cleaning problems and the timing of intervention
techniques, such as sweeps. Swab and surge modeling
was conducted on all bit trips, short trips, casing and liner
runs. This information was communicated to the operator
representative for determining trip speeds.

Samples of the SBM were sent to the laboratory on a
weekly basis for routine mud checks and Fann 70
analysis. Laboratory results were used to update
engineering cases with the most recent properties of the
mud system, and were then transferred offshore via
electronic mail.  This continual stream of updated
information, via the case transfer mechanism, facilitated
the accuracy of hydraulics, hole cleaning and swab/surge
modeling.

Conclusions

* The effects of annular temperature and pressures on
SBM rheology and density must be considered for
accurate pressure and hole cleaning predictions.

* Engineering software is available for comprehensive
analysis of the circulating system during well planning
and execution.

* Information collected during well planning is useful for
making informed decisions in well design.

* Innovative communications technology facilitates
sharing of engineering cases among an unlimited
number of onshore and offshore users.

» ECD’s calculated at the well site are typically within 0.1
Ib/gal of measured values.

e Accuracy in ECD predictions at the well site is
beneficial in maximizing operating time in case of tool
failure.

Nomenclature

ECD = Equivalent circulation density
ESD = Equivalent static density
ROP = Rate of penetration

SPP = Standpipe pressure

TVD = True vertical depth

MD = Measured depth

DCP = Dirill Collar Pressure tool
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OD = Outside diameter

ID = Internal Diameter

BHA = Bottom-hole assembly

TFA = Total fluid area

GPM = flowrate, gallons per minute

d = diameter

dps = Generalized frictional pressure
psi = Pressure, pounds per square inch
Ibm/gal = Mud weight, pounds of mass/gallon
f = Volume fraction of the fluid

Cp = Heat capacity

k = Heat conductivity

p = Pressure

r = Radial distance

Re = Reynolds number

p = density

t = Time

T = Temperature

g = Acceleration due to gravity

U = Heat transfer coefficient

Indices (unless otherwise stated)

a =-annulus

p= string

f = formation

I = index referencing a node in the FD grid
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Table 1 — Planning Considerations

Wells A & B
17” Section 12 '/4” Section
Water Depth 5685 feet Water Depth 5685 feet
Fracture pressure 10.9 Ibm/gal Fracture pressure 12.5 Ibm/gal
Max SPP 4200 psi Max SPP 4200 psi
Drill Pipe OD 5.5" Drill Pipe OD 5.5"
Rate-of-penetration 100 and 150 feet/hour Rate-of-penetration 100 and 150 feet/hour

Ta = (Ta; +Ta;,,) /2

Pa = (Pa +Pa,;)/2

Annulus

Drill Pipe

Ppi+1a Tpi+1

Tp=(Tp;+Tpi) /2

Pp = (Pp; +Pp;;1) / 2

Figure 1. Temperature and pressure updates within hydraulic segments
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