Economic Evaluation of Specialist Bit Optimization Engineering in North Sea Exploration Drilling
B. Bjelland, Norsk Hydro ASA, and P. Casey, Smith International, Inc.

Abstract
The increased use of specialist engineering services in the application and optimization of drilling bits results in operator cost savings and continually encourages research that will find new ways to lower future costs. Despite tangible benefits, specialist engineering services are not yet widely accepted.

This paper uses case histories from twelve exploration wells and one sidetrack from the Norwegian Sector of the North Sea to describe the benefits realized from three operational areas from which cost savings are commonly sought:

1. The efficient reuse of used bits and rebuilt bits.
2. Savings realizable through more efficient use of bits and hole openers, and;
3. Prospective savings resulting from savings in drilling time.

Existing offset wells were used to establish bit and hole opener AFEs and performance benchmarks. The cost of engineering services was incorporated into this evaluation. Offsets were also the basis for estimates of drilling time required for each well and as benchmarks in each exploration area.

Introduction
The correct selection and utilization of drill bits has a major influence on drilling cost. While a bit, itself, represents a small increment of total drilling cost, the bit’s productivity and its interrelationship with rig capability, bottom hole assembly, mud, and the formation being drilled significantly influence overall economic results. Advanced Services Engineering, a specialist engineering service, contributes to drilling cost reduction by providing special focus on drill bits and factors affecting their performance. The discipline is driven by in-depth evaluation of the drilling environment as it affects bit drilling efficiency. A comprehensive well plan is formulated, performance during the drilling phase is evaluated, and a post well analysis on each project well is completed for use both for measurement of the success of the plan and as reference for future development wells.

In the fall of 2000, Norsk Hydro established an objective to reduce exploration well costs by employing specialist engineering services. A specialist engineering services project was established in 2000 and given the mandate to drill as cost effectively as possible in designated offshore exploration blocks. The project continued until exploration drilling was suspended in 2002.

The effectiveness of specialist engineering services was to be evaluated based on direct material cost savings and indirect savings made as a result of improvements in drilling efficiency.

Direct cost savings were based on incremental savings achieved in two ways.

1. By re use of used bits in applications in which this practice would be economic but would neither compromise bit performance nor increase risk of premature tool failure.
2. By use of bits not suitable for re-use but in good enough condition to justify rebuild. Again, the practice was employed only in circumstances in which rebuilt bits were unlikely to compromise bit performance or result in premature tool failure.

Indirect savings were quantified by comparing:

1. Actual cost of bits, hole openers, and specialist engineering services to budget, and,
2. Actual drilling days to planned drilling days on a per well basis.

Specialist Services Process
The concept of specialist engineering services was introduced to Norsk Hydro in 1996 and was therefore not new when the work described in this paper was initiated. Specific services acquired, and the sequence in which they are delivered are outlined by Figure 9. The process basically has three phases, Application Analysis, Development of Operational Synergy, and Post-Operational Review and Development of the Experience Base.
These are described below based on 12 exploration wells and one offset in the Norwegian Sector of the North Sea to describe the benefits realized from three operational areas from which cost savings were sought:

1. The efficient re-use of used bits and rebuilt bits.
2. Savings realizable through more efficient use of bits and hole openers, and;
3. Prospective savings resulting from savings in drilling time.

Existing offset wells were used to establish bit and hole opener AFEs and performance benchmarks. The cost of engineering services was incorporated into this evaluation. Offsets were also the basis for estimates of drilling time required for each well and as benchmarks in each exploration area.

Application Analysis

Upon project initiation, the drilling team outlined systems (e.g. the Well Construction Group) and subsystems (e.g. the Hole Placement Team) to be used. This drilling team is an organization designed by the team members to ensure integration and equally weighted consideration of each planning facet for complex wells.

The team defines well options, (i.e. drill a well from a semi-submersable rig to target X,Y,Z). With well options defined, the specialist engineer makes offset analyses for each of the well options to verify the feasibility of drilling the proposed well efficiently. The Drilling Team then makes final well option decisions.

At this point, the specialist engineer begins definition of application objectives (e.g. shoe-2-shoe section drilling etc.). These are based on analysis of well and pertinent offset data for each section. Offset performance, evaluation and processing of offset electric logs and mud logs are carried out by the specialist engineer to generate rock strength logs and offset parameter logs for offset wells. (Figures 1 and 2 provide examples of rock strength analyses). These assist bit type selection based on formation characteristics. The offset parameter logs are used to analyse the parameters used on offset wells, correlate these parameters to rock strength and help identify optimum drilling parameters for the proposed well to be drilled. (Figure 3 shows an offset parameter log). These analyses are used to develop a drilling performance database for the planned well. This specialist engineering sub-process ensures that selected top performing products are applied in the correct application within the well operation.

With a final draft, Drilling Performance Plan, (See Figure 4); the specialist engineer confers with the drilling team for a Peer Review. Dialog from this review may lead to redefinition of objectives and / or changes in the plan. Only when the complete team “buys into the plan” is it approved and finalized for operational use.

As each bit run is completed, the specialist engineering team up-loads available e-log and drilling information to the rock strength logs and offset parameter log analysis system for post/pre-well analysis. The rock strength logs and offset parameter log analysis system provides the specialist engineering team with a multi-disciplined approach to characterizing the drilling environment. With E-log input, the system first determines optimum cutting structure, hydraulic requirements, gage protection, and other bit design features necessary to optimally drill encountered formations in the lithological reconstruction of the drilled stratigraphic section. When available data have been uploaded, the lithology column built, and unconfined rock compressive strengths calculated, offset well data can be divided into sections, or drillability intervals, based on like rock mechanical units, (often incorporating several geological units), or lithologic units for continued formation analysis. The specialist engineering team statistically evaluates key parameters for each Drillability Interval. Sand / shale content combined with rock strength contribute to the model’s determination of formation abrasiveness (sands) / stickiness (shale). Graphical outputs provide qualitative risk assessment of each planned bit run, in addition to a predictive geohazard tool, (See Figures 1 and 2.).

The post-well-analysis package allows the specialist engineer team to correlate drilling parameters applied to bit-BHA to be assessed in conjunction with the geological reconstruction for the well. By determining drilling parameters that have the largest effect on ROP, the team isolates their influence on other system components and proposes processes by which to further optimize the drilling system.

Optimized drilling parameters, high performance drilling bit-BHA systems, intimate application knowledge, combined with scenario planned contingencies for unscheduled events allow an iterative learning process from well to well to develop within the drilling team.

Development of Operational Synergy (Syn-operations)

The specialist engineer in coordination with the drilling and logistics team is responsible for ensuring the proper primary bits and contingency bits are on site at the appropriate time in the drilling sequence and that the necessary ancillary equipment such as nozzles, bit breakers and ring gages are also on site for use with the bit. The specialist engineer is also responsible for making sure that the drilling bits are compatible with the planned rotary drive systems.

As mentioned above, execution of the specialist engineering Drilling Performance Plan during drilling...
operations relies on unreserved buy-in by the entire drilling team. Development of synergy between the rig crew and the planning-support team is seen as critical. Thus, the Planner Specialist Engineer must also see himself/ herself, and be seen, as the Rigsite Specialist Engineer. This ensures effective communication of the drilling performance plan to the rig crew by the engineer who analyzed, formulated and drew up the execution plan. In addition, a specialist engineer's drilling experience favorably contributes to quick identification of potential problems and appropriate actions by which they can be mitigated.

Bit selection is governed by the planning process and the rig decision trees developed from that process. (See Figure 5.) A selected bit is checked, dressed and gaged at rig site prior to make-up using correct M/U torque.

During RIH, the specialist engineer assists the driller in identifying bit-hazards and precautionary measures needed to safely negotiate them. Carefully tagging bottom and drilling ahead can be combined with active drill-off testing to provide mechanical formation data for future wells. The specialist engineer carefully monitors operating parameters and bit-BHA response to optimize the drilling system for speed and longevity. If appropriate, the specialist engineer initiates changes in drilling parameters to mitigate unwanted drilling events (e.g., Bit-BHA vibration).

As a run approaches its terminators, (planned or unplanned), the specialist engineer must be on site to assess and advise as to the validity of the “pull” in terms of overall performance. This ensures against unnecessary “bit trips” and prevents wasted rig time. Trips to surface can then be used to assess problematic zones to further enhance knowledge and application appreciation by the specialist team.

Post-Operational Review and Development of the Experience Base

The specialist engineer conducts a post well analysis to correlate drilling parameters applied to the bit-BHA with a geological reconstruction for the well. He/ she determines drilling parameters that have the biggest effect on ROP, isolate their effect on other system components and propose processes by which to further optimize the drilling system. Post well evaluation of actual versus planned performance and comparison to benchmarks is carried out along with a rationalisation of any changes in performance. Subsequent learnings are documented and incorporated into the optimisation process for subsequent wells.

The specialist engineer also ascertains the effects of unplanned events that occurred and re-analyzes contingency planning for each specific unplanned event. Furthermore, appropriate decision trees will be drafted to counter the effects of the reoccurrence of an unplanned event.

Specialist engineers have the responsibility to coordinate the retrieval of used / dull bits from the rig. These bits are then inspected and their potentials for reuse or rebuild assessed. Preferably, the evaluation of used / dull bits is carried out in conjunction with drill bit suppliers so as to evaluate the prospect of improvement in bit performance through the use of improved materials and designs.

Actual Study and Methodology –vs- Evaluation of Direct Cost Savings

Direct cost savings were evaluated and are summarized using case histories for twelve, sequentially drilled wells and one sidetrack. The summary details bits used for the well, color coded to indicate use of new, re run, or rebuilt bits. Savings resulting from re used and rebuilt bits are indicated in the summary. The summary also describes how often particular bits were reused. As a result of this methodology, a reduction in bit expenditure in excess of $1,459,000 USD for the over twelve wells and the side-track was realized. (See Figure 6: Exploration Bits Usage Report with Value Saved 2000 – 2002.)

In order to minimize or eliminate prospects for either compromise in bit performance or premature tool failure, each previously run bit was inspected by the specialist engineer for wear and defects prior to reuse, or in the case of rebuilt bits as an element of the rework process. The specialist engineer has responsibility for the logistics of retrieval and inspection of used bits. In cases in which used bits were deemed suitable for rebuild and redeployment, the specialist engineer, in coordination with the drilling team, evaluated the economics of each case and coordinated the logistics of this process with drill bit suppliers.

A premature failure of one rebuilt bit led to an unscheduled bit trip and necessitated use of a new bit to TD the well. Use of rebuilt bits was subsequently discouraged for applications in which long bit trips were involved as the cost of risk exceeded potential for savings.

As part of the specialized engineering management process, remanufacturing processes utilized for bit rebuild were evaluated. These processes can fundamentally alter material properties and compromise bit integrity. Great care must be taken with rebuilding and...
deployment of rebuilt bits.

Evaluation of Indirect Cost Savings:
Indirect cost savings were evaluated, by well, using a combined histogram and spreadsheet format from which AFE cost for bits and hole openers and specialist engineering services were compared to actual cost. As specialist engineering services had not been budgeted, the cost of specialist engineering services was set against savings realized from improvements in bit and hole opener efficiency. Overall specialist engineering cost and bit and hole opener cost were presented separately to show their proportional costs. Overall project budget for bits and hole openers was $3,610,000 USD. Actual expenditure was $2,745,000 USD, (rounded). This amounted to a saving of $865,000 USD, (rounded), after deduction of specialist engineering services. 93% of total expenditure was attributable to drillbits and hole openers, 7% to specialist engineering services. (See Figure 7: Exploration Actual Bit, Hole Opener, and Services Cost Versus AFE 2000 - 2002.)

A second means of quantifying indirect savings compared AFE budget for drilling days, by well, to actual drilling days. (Drilling days are classified as days exclusively spent drilling to the exclusion of all other non drilling activities or "flat time.") This evaluation also utilized a histogram / spreadsheet format.
Actual drilling days were color coded against AFE drilling days and a second histogram used to illustrate days saved. Against an AFE plan for 166 days, 99 days drilling days were used in this drilling campaign which translated to a 59% reduction in actual versus planned drilling days. Rig rate was approximately $230,000 USD per day. (See Figure 8, Exploration Actual Well Drilling Days Versus Planned Drilling Days 2000 – 2001.)

Conclusions
1. Significant direct cost savings can be realised by reusing and rebuilding bits and these savings can be quantified in an effective way.
2. As the result of specialist engineering services, indirect savings from reduced drilling days can be realized and an effectively quantified.
3. As the result of specialist engineering services, indirect savings from reduced bit and hole opener costs can be demonstrated and accurately quantified.
4. It is possible to accurately quantify performance of specialist engineering services.
5. The use of specialist engineering services can lead to substantial improvement in drilling economics.
6. An intangible benefit of the assignment of specialist engineers within the drilling team is that it allows other team members to focus on drilling engineering and operational issues other than those relating to bits.

Nomenclature
- AFE = authorization for expenditure
- BHA = bottomhole assembly
- HO = hole opener
- M/U = make up
- RIH = run in hole
- ROP = drilling rate of penetration
- TD = total depth
- USD = United States dollars
- WOB = weight on bit

Acknowledgements
The authors would like to thank David Conroy of Smith Bits Advanced Services Engineering Group and Kristin Nergaard from the Smith Bits Drill Bit Optimization Group for their invaluable contributions to this paper. Special mention also goes Terje Skram, David Tjøswold and Helge Agotnes of Norsk Hydro Exploration for their immense contributions.
Figure 1: Fixed Cutter Bit Selector
Figure 2: Rock Bit Selector

Drill Bit Optimization System

- **Gamma Ray (GR)**
 - Value: 0
- **Sonic (DT)**
 - Value: 0
- **SH SS SILT CNGL VOLC PYRT CHRT**
- **Compressive strength (CMPS)**
 - Value: 0
- **LN POR**
 - Value: 0

M. DEPTH (m)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td></td>
</tr>
<tr>
<td>2200</td>
<td></td>
</tr>
<tr>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>2600</td>
<td></td>
</tr>
</tbody>
</table>

TCI BIT TYPE

- 01M
- 02M
- 05M
- 10M
- 12M
- 15M
- 20M
- 25M
- 30M
- 35M
- 40M
- 45M
- 50M

INSERT

- 'DD' BIT
- CONICAL 'Y'

GAUGE PROTECTION

- TRUCUT
- STANDARD
- SOFT 'OD'
- DE CHISEL
- HARD 'OD'

HYDRAULICS

- NOZZLES
 - STANDARD
 - XFLOW
 - C.JET
 - EXTND Q
 - 'G' COAT

BIT SELECTOR

- Drill Bit Optimization System
- Rock Bit Selector

Figure 2: Rock Bit Selector
Figure 3: Bit Performance Plot
Exploration – Drilling Performance Plan, Bits & Drilling Parameters

<table>
<thead>
<tr>
<th>Formations</th>
<th>Predictions</th>
<th>Suggested actions</th>
<th>Parameters range</th>
<th>What to do ...</th>
</tr>
</thead>
</table>
| Nordland: 366-552 | Scattered boulders, Danger of bit balling, Hole cleaning / packing of problems | Control ROP with HO to remain vertical, Use max flow and Hi-vis pills to ensure good hole cleaning. Have 5 1/2" pumpliners installed when drilling 26" hole, Use max RPM with 26" bit while drilling in rotary mode (+/- 280 RPM). Displace 26" hole to 1.40 s.g. mud weight before making any trips. AT TD, circulate minimum one time B.U. with the highest possible string rotation. | 17 1/2"/38" HO
• ROP: 20 m/hr
• WOB: 30-100 kN
• RPM: 90-100
• FLOW: 5000 l/min
26" TCI Bit (415)
• ROP: 55 m/hr
• WOB: 60-200 kN
• OH RPM: 250-280 (rotary mode)
• FLOW: 5000 l/min | Drill Vibrations
TORSIONAL VIBRATIONS/STICK SLIP
• Allow bit to drill off Weight, or
• Increase RPM, or
• Pull off bottom and start again
LATERAL VIBRATIONS
• Decrease RPM, or
• Increase WOB, or
• Pull off bottom and start again
AXIAL VIBRATIONS
• Increase RPM 5 minutes, then
• Decrease RPM 5 minutes, then
• Use initial RPM +/- 10 RPM
EXTREME VIBRATIONS
• Pick of bottom, then
• Let the string settle, then
• Try again with new parameters |
| Hordaland: 552-1030 | Bit balling | Maximise flow and pump pressure, Monitor SPP: (5 1/2" pump liners)
Keep WOB low, adjust RPM for ROP
In 17 1/2" section Use X-Flow for proper hydraulics and maximum ROP. | 17 1/2 Bit (113)
• ROP: 50 m/hr
• WOB: 100-250 kN
• OH RPM: 200-220 (rotary mode)
• FLOW: 5000 l/min | Formations Changes
SOFT TO HARD
• Keep WOB same, and
• Decrease RPM, then
• Let bit drill into hard formation, then
• Optimise WOB and RPM for ROP
HARD TO SOFT
• Keep RPM same, and
• Let the WOB decrease, then
• Let bit drill into soft formation, then
• Optimise WOB and RPM for ROP
IF VIBRATIONS OCCUR
• Prioritise vibration instructions |
| Rogaland: 1030-1140 | Bit balling | Maximise flow and pump pressure, Start reading “What to do...” NOW!!! | | |
| Seile 1140-1220 | | | | |
| Lista 1220-1434 | | | | |
| Shetland 1434-1549 | | | | |
| Viking 1549-1599 | | | | |
| Draupne 1599-1758 | | | | |
| Sognefjord 1599-1785 | | | | |
| Fensfjord 1795-1920 | | | | |
| Krossfjord 1920-1950 | | | | |
| TD at 1950 m | | | | |

IF IN DOUBT CONSULT DRILLING PERFORMANCE ENGINEER
12 1/4" Section Performance Plan

<table>
<thead>
<tr>
<th>OPERATIONAL RECOMMENDATIONS</th>
<th>DIRECTIONAL PLAN</th>
<th>PROPOSED R.O.P.</th>
<th>PLANNED DRILLING EVENTS</th>
<th>UNPLANNED DRILLING EVENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Bit: 12 1/4" MA74FX IADC M223</td>
<td>Build up to 22.38° @ 1579MD (2.5°/30m) Hold angle to 2435MD Drop to 0° @ 2883MD (1.5°/30m)</td>
<td>20 40 60 80</td>
<td>Offset ROP 5 - 30 m/hr. Reduced ROP: In Hordaland offset well 25/5-A-10 in Balder offset wells 25/5-A8 & A10 in Vale and TopShetland: offset well 25/5-A9 and 25/5-A8 & A10 Inadequate Hole Cleaning: Indications of cuttings build-up: •Increase in Rotary torque, •Increase in SPP, •Increase in up & down weights during connection, •Insufficient cuttings return. Packing Off: Tendencies of packing off the BHA (well: 25/5-A10, Mid Shetland) •Pump Hi-Vs pills every 30m, or every 10m if needed.</td>
<td>Bit Balling: OBM is used in this section and the Balling up is virtually eliminated. Stuck Pipe: •Conduct stuck pipe awareness training. Drilling stringers: •Reduce string RPM, slide if possible. •After 2-3 minutes, add WOB, •As ROP increases (breaking through), decrease WOB through transition zone, •Return to normal drilling parameters. PDC Bit Damage: •Should the PDC experience damage due to formation elements, consider running an Insert Rock Bit (see backup bits).</td>
</tr>
</tbody>
</table>

Reduced ROP expected drilling this section due to increase in compressive strength of these formations.

Do not keep pipe stationary with high flow and rotation as the chances of washouts and side-tracking is high throughout the section.

DRILLING VIBRATIONS

For procedure to combat vibrations refer to vibrations slide:
- **TORSIONAL VIBRATIONS**
- **LATERAL VIBRATION**
- **AXIAL VIBRATIONS**
Figure 5: Decision Tree
Figure 6: Exploration Bit Usage Report With Savings 2000 - 2002
Figure 7: Exploration Actual Bit & HO vs. AFE 2000 - 2002
Figure 8: Actual vs Planned Drilling Days
Advanced Services Engineering Process
Used to Produce Results Reported In This Paper

PROCESS STEP 1
Analyze of all relevant offset data pertaining to a planned well with a view toward optimizing bit selection and bit operating conditions. Relevant offset data would consist of a review of bit selection, operational parameter logs and bit performance on offset wells. Also evaluation and processing of offset electric logs and mud logs is carried out by the specialist engineer in order to generate rock strength logs and offset parameter logs for the offset wells. (Figures 1 and 2 provide samples of a rock strength analyses used to help select appropriate bit types based on formation characteristics. Figure 3 is an example of a offset parameter log.)

PROCESS STEP 2
Identify drilling hazards based on offset well reports, offset data review and a review of the geologic prognosis.

PROCESS STEP 3
Optimize well trajectory based on rock strength analysis.

PROCESS STEP 4
Make Primary bit selection based on offset data analysis outlined above, the proposed well trajectory, BHA, casing design, proposed mud program and incorporating advances in bit technology. In addition, make contingency bit selection(s) to take into account possible unscheduled events.

PROCESS STEP 5
Draft the drilling performance plan, by hole section, incorporating the information analyzed and data processed outlined in points 1-4 above. (See Figure 4 for an example of a section performance plan.)

PROCESS STEP 6
Draft decision trees, where appropriate, to assist the rig team in the drilling optimization process and to counter the effects of recurrence of unplanned events. (See Figure 5 for an example of a decision tree.)

PROCESS STEP 7
Present the drilling performance plan to the drilling team for dialog, changes, approval and subsequent release for operational use.

PROCESS STEP 8
Assist the driller at the rig site in identifying bit hazards, recommend precautionary measures to avoid these and monitor operational parameters in order to optimize the drilling system for bit speed and longevity.

PROCESS STEP 9
Assess the validity of bit pulls in terms of overall performance to ensure no unnecessary bit trips.

PROCESS STEP 10
Make post well analyses to correlate drilling parameters applied to the bit-BHA in conjunction with the geological reconstruction for the well. Determine drilling parameter(s) that have the largest effect on ROP, isolate their effect on other system components and propose processes by which to further optimize the drilling system.

PROCESS STEP 11
Evaluate used/dull bits and coordination with drill bit suppliers to improve bit performance through the use of new materials and alternative bit geometries.

PROCESS STEP 12
Document acquired knowledge for future use.

Figure 9: Advanced Services Engineering Process