DATA PROCESSING & DESIGN IMPLEMENTATION

So Much Data, So Little Time

Ben Sellers
02-26-2020
OUTLINE

• Background Information
 – FourPoint Energy’s (FPE) Shelf Overview
 – Where I left off 2019’s AADE Talk
 – Updated DvD and FPE’s Process to Move Curves Left

• Data Collection Methods
 – Typical Drilling Data Stream
 – FPE Data Collection Work Flow

• Data Analysis
 – 8 3/4” Intermediate Data & Results
 • Managed Parameters
 • Bit Development
 • Motor Degradation
 – 6 1/8” Production/Lateral Data & Results
 • Bit Design & Motor Selection
 • Ground Truthing
 • CUCs

• Conclusions & Future Testing
Operated Wells 2,100
Daily Production 67,000 Boed
Liquids 50%
Net Acres 746 Kacres
Operated Rigs 2
Frac Crews 1
Target Zones 10'

Target Zones:
- Cleveland, Marmaton, Tonkawa, Granite Wash
Applying and Successfully Executing all Discussed Techniques

- Continue to gather data and refine processes

Lateral (Production)

- How to Efficiently Drill that Last 2.5k is the current challenge.
Current SHELF DvD (Interval Appraisal)

Hole Interval Performance Change from 2019 to Present:

- **Intermediate:**
 - ICP from 7 DFS to 4 DFS
 - Single Run

- **Curve:**
 - Curve Section (KOP to LP) from 36 hrs. to 12 hrs.
 - Single Run

- **Lateral:**
 - Average daily footage from <1,000’ +/- 250’ to 1,500’ +/- 250’

- Overall by the EOY 2019 FPE drilling had reduced rig cycle time by ~25 – 33%.
FPE Application of Technology

1. Improve bit technology with a focus on longevity – Trips to replace worn bits increase costs, time, and risk
 - Refine: Establish partnership directly with bit design engineers.
 - Measure: For vendor to improve speed and quality of upgrades, FPE must follow strict parameter management guidelines in the field and provide access to proprietary data.
 - Repeat: Improved design iteration time from six months to six weeks. Systematically reduced trips for dull bits from three to zero.

2. Leverage learnings and new technology to double lateral length without reducing performance or increasing risk
 - Refine: Improve pre-well planning and field practices via T&D modeling, training, and rigorous peer reviews.
 - Measure: Validate model with historical field data then use real-time to detect and react to deviations.
 - Repeat: Engineers e-mail model updates to team daily or more frequent as needed.

3. Further improve bit technology to retain longevity advancements while increasing ROP
 - Refine: Need better understanding of detailed bit, motor, and drill string interaction and resulting downhole dynamics.
 - Measure: Utilize new technology to gather memory data at the bit.
 - Repeat: Improving certain bit design aspects in a week. Moving towards better understanding of bit/motor combinations.
Typical Drilling Data Stream

Current Drilling Data Properties

- **Location**
 - Surface
 - Downhole
 - Position in Drill String

- **Frequency**
 - High = Continuous (1 – 1600 Hz up to 56k baud)
 - Low = Contextual (Reports)

- **Dataset Size**
 - Large (=GB/TB)
 - Small (MB)

- **Timeframe**
 - Real-Time
 - Post-Run
 - Post-Well

- **Cost**
 - High (>100K Well)
 - Low (<10K Run)

- **Operational Impact**
Downhole High-Resolution Data-Logging

Sensor Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Sub</td>
<td>✓</td>
</tr>
<tr>
<td>Embedded into Existing Equipment</td>
<td>✓</td>
</tr>
<tr>
<td>Tool Sizes</td>
<td>4 ¼” to 9 5/8”</td>
</tr>
<tr>
<td>3-Axis Vibration</td>
<td>-16G to -16G (+/- 10mG)</td>
</tr>
<tr>
<td>Vibration Sample Rate</td>
<td>25-100Hz</td>
</tr>
<tr>
<td>Vibration Record</td>
<td>Sequential</td>
</tr>
<tr>
<td>3-Axis Shock</td>
<td>-200G to +200G (+/- 100mG)</td>
</tr>
<tr>
<td>Shock Sample Rate</td>
<td>800 Hz</td>
</tr>
<tr>
<td>Gyro RPM</td>
<td>+/- 330 RPM</td>
</tr>
<tr>
<td>Gyro Sample Rate</td>
<td>20Hz</td>
</tr>
<tr>
<td>Gyro RPM Record</td>
<td>Sequential</td>
</tr>
</tbody>
</table>
| Temperature | Standard - 150°C (302°F)
 | High Temp. - 175 °C (347°F) |
| Pressure Rating | 15,000 PSI |
| Battery Life | Up to 200 hours |

Axis Convention

Drilling rotation direction

Tangential

Radial

Other Potential Down-Hole Data Sources

At-bit CuBIC PuK

BHA & String CuBIC
1) Establish baseline dataset. Gather enough data to build a good fundamental understanding of current drilling conditions/practices
2) Run sensors on runs and in areas that need additional data or are built for a specific test/trial purpose
3) Merge all other data streams to generate as robust of a dataset as possible
4) Take a multi-disciplinary approach to analysis and solving problems. Include as many specialists/technical people in reviewing data
5) Use multiple platforms to process data and utilize those that are targeted to what the question is
CASE STUDIES & DESIGN IMPLEMENTATION

8 ¾” INTERMEDIATE INTERVAL
Intermediate Section Case Studies – Cleveland Shelf

Fourpoint – Cleveland Shelf Program
8.75” Intermediate Section Case Study

Application Challenges
- Diverse formation types – Shale, Anhydrite, Dolomite, Sandstone
- Interbedded formations
- High angle tangent well profiles
- High power drilling motors
- Maximizing ROP and reducing bit damage

MultiSense Data Analysis Objective
- Characterize drilling vibrations for drilling parameter optimization
- Measure drilling motor performance for drilling parameter optimization and motor selection
- Drive bit design changes to improve total section performance

Drill Bit Selection: 8.75” D505TX

Tech Specs
- Blade Count: 5
- Cutters
 - Size: 5/8”
 - Type: Abrasion Resistant
 - Geometry: StayCool
- Gage Length: 3.0”
- Hydraulics: 5 adjustable nozzles

Stability Features
- StayTrue inserts
- Asymmetrical blade layout
Intermediate Section Case Studies – Managed Parameters

Drilling Parameter Optimization

Bit Balling in Top Hole Shale
- Observed low ROP and low vibrations
- Driller responded with higher WOB
- Resulted in DBR bit in Anhydrite formation below
- Recommendation – increase RPM and reduce WOB to mitigate balling

Bit Damage in Tonkawa Sands
- Experienced higher rate of DBR
- Measured high lateral vibrations in low gamma sand sections
- Recommendation – reduce RPM to mitigate lateral vibrations and abrasive wear
Intermediate Section Case Studies – Bit Design Development

Bit Design Development

- Observed overall low stick-slip vibrations levels
- Opportunity to increase bit aggressiveness
- Design change to increase cutter sharpness
- Results – higher ROP, lower Laterals, no change to Stick Slip or Axials

![Graph showing comparison between standard and dual chamfer bit designs](image-url)

Well #1
- Dual chamfer (StabilisX)

Well #2
- Standard chamfer

Vibrations Comparison
- Lateral Vibrations
- Axial Vibrations
- Stick Slip

© 2014 FourPoint Energy
Intermediate Section Case Studies – Bit RPM Loss

Motor RPM Degradation

MultiSense RPM declines after about 4500 ft

Bit RPM is 65% of expectation at end of run
Deeper Investigation
Time-Matched Surface and MultiSense Data

On Bottom
• MultiSense RPM is lower than Total Bit RPM

Off Bottom
• MultiSense RPM matches Total Bit RPM

Demonstrates that RPM reduction is due to motor providing insufficient power while under load
Intermediate Section Case Studies – Motor Degradation

Motor Performance Summary

Calculated motor speed coefficient throughout the run

Enables better engineering decision making to diagnose and solve the problem

[Graph showing motor performance summary with different motor speeds and other data points]
Intermediate Section Case Studies – Motor Degradation

Root Cause Analysis

Hypotheses for the root cause of Motor RPM Degradation

1. Drilling vibrations in Anhydrite
2. Mud properties after displacement

Dedicated Trip test to identify root cause

Potential Interval Efficiency
CASE STUDIES & DESIGN IMPLEMENTATION

6 1/8TH LATERAL INTERVAL
GameChanger Viewer software - Downhole Data Analysis

Stick-Slip & Shock Severity comparison with different Bits, BHA, & Operating Parameters

Multiple data sets can be over-laid on depth for well to well and pad to pad comparison in order to perform detailed data analysis zooming in and out of the tracks and traces for regions of interest to clearly see signal patterns and sensor response.

- Overlay multiple wells or runs and easily zoom to areas of interest
- Compare stick-slip & shock dynamics from different BHA/Motor configurations (ie: BHA stabilization, Motor bit-to-bend distances, different bit types/cutting structure)
- Combine EDR, Sanvean Sensor, and MWD data for detail analysis
- View impact of drilling parameters against shock, stick-slip, ROP (auto-driller induced issues)
- Sanvean Sensor calculated MSE & RPG analysis

MD Overlay comparison of Short BtB vs Normal BtB motors 4 wells

MD Overlay comparison of different bit types and motor configs

MD Overlay comparison of different bit cutter modifications across 4 wells
Lateral Section Case Studies – Ground Truthing

GameChanger Viewer software - Downhole Data Analysis
Identify auto-driller dysfunctions, drilling dynamic changes due to rig problems, and influence of string vibration tools

Quickly interpret data for root cause failure analysis, view various axial oscillation & friction reduction tools impact through sensor analysis, observe sensor responses due incorrectly tuned auto-drillers, & identify changes in drilling dynamics before and after rig services/repairs.

Auto-Driller functionality & Impact on Sensor Response
TopDrive issue seen in sensor dynamics
Vibration Tool: Axial Oscillation response & Weight Transfer
Lateral Section Case Studies - CUCs

<table>
<thead>
<tr>
<th>Date In</th>
<th>Date Out</th>
<th>Rig</th>
<th>Well</th>
<th>BHA County</th>
<th>Motor Spec</th>
<th>BHA Type</th>
<th>BHT Hrs</th>
<th>Depth In (ft)</th>
<th>Depth Out (ft)</th>
<th>Drilling Hrs</th>
<th>ROP</th>
<th>Bit Mfr</th>
<th>Bit Type</th>
<th>Material #</th>
<th>Bit Dull Grading</th>
<th>Agitator behind bit distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/20/2019</td>
<td>12/24/2019</td>
<td>Power 3</td>
<td>SPOONBILL 20X17-17-23</td>
<td>5 Ellis, OK</td>
<td>24XH513-103</td>
<td>Lateral Steerable</td>
<td>114.25</td>
<td>10,263</td>
<td>15,621</td>
<td>5,358</td>
<td>83.83</td>
<td>63.9</td>
<td>HAL 1328757</td>
<td>ST54WKHE</td>
<td>1120891</td>
<td>N</td>
</tr>
</tbody>
</table>

High Frequency Spectra

- ~60 Hz
- ~75 Hz

- ~82RPM
- ~250gpm
- ~20g lateral shock while sliding (higher tangential shock while rotating ~35g)
- ~40g lateral shock during CUC (higher radial shock increase)

Rating: Stall

Begin CUC prior to POOH
FUTURE TESTING & CONCLUSIONS
Future Testing & Conclusions

Future Testing

- **Intermediate**
 - Continue trials to reduce motor degradation
 - When motor degradation has been resolved continue with bit design iteration
 - Keep refining managed drilling parameters to target high ROP and single bit run interval
 - Possibly geospatially (Requires Large Dataset)

- **Lateral**
 - Different BHA stabilization to reduce slide % (Monitor vibes. and stick-slip)
 - Push lateral bit design aggressiveness to increase instantaneous ROP w/o compromising durability

- **Other Downhole Tools**
 - Trials on different vendor’s vibratory tools as well as additional shock sub placement

Conclusions

- Downhole Memory Data can be a very useful tool to the DE, as with any data it is only as useful as you make it.
 - Analytics Platforms (Sabio, Gamechanger)
 - Potential Analytic Platforms (Corva, Mobilize, etc...)
 - Subject Matter Experts (SMEs). Find good industry experts and gather their view and analysis of the data.
 - Share proprietary data

- Return on investment comes from prolonged use of the data sensors

- Utilization of high-resolution downhole at bit data has discovered and/or verified problems or successes in our drilling program that otherwise would have taken longer to figure out or design around

- Cost Reduction with Widespread and Repeated Use
Thank You to My SMEs and Questions

- Christopher Blanton and Jonathon Hammack

- John Fairbairn and the Baker Hughes Team

- Steve Jones, Jake Blacklaws and Sanvean/Scout Team

- FPE/PHX MWD Field Hands and the Prism Group

- Ricky Bourque and the Panther Motor Shop Team

- Kacy Kauk