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Abstract 

The rheological compatibility between drilling fluids, 

spacers and cement slurries is very important. Incompatible 

fluids cause excessive pressure, fluid channeling and a poor 

cement job. Fluid compatibility tests are all often conducted 

by trial and error in the laboratory and it is, in fact, very time 

consuming. There are several test data that would not be used 

in this method and it is hard to capture a plethora of 

information for users and take intelligent and cost-effective 

decision to design a fluid with the desired properties. 

Therefore, trial and error method is considered to be very 

costly and misleading. Today, there is a need for an intelligent 

system which uses all the available fluid design data stored in 

a database by which we can benefit from its insights for smart 

fluid designs. This predictive tool suggests a composition for 

drilling fluids, spacer fluid or cement slurry by implementing 

a machine learning algorithm on imported experimental data. 

Designing these fluids in a wide range of rheological profiles 

allows minimization of fluid intermixing.   

 

This study demonstrates the implementation of a data-

driven predictive tool which uses Gaussian Process Regression 

(GPR) to design or improve compatibility between fluids. 

GPR as a machine learning method considerably reduces the 

costs of testing, optimizes the material use, integrates 

available experimental data and eliminates the user bias. This 

practical nonlinear regression method fosters an efficient and 

fast prediction analysis which do not require including 

complex physics of the underlying intricate chemical fluid 

behavior while integrating all available data from different 

databases. GPR has exceptional advantages over traditional 

regression methods since it does not require a known form for 

regression function. This machine learning based tool offers 

comprehensive insights for intelligent fluid design and 

considerably reduces the experiment cost. This study 

showcases an example through which of GPR predicts 

incompatibility between fluids and helped engineers to 

maintain the fluid rheological hierarchy for better cement jobs 

and well integrity. 

 

 

Introduction  
Machine learning methodologies and expert systems have 

proved to be conducive to digest large data sets and make 

intelligent decisions for agile productivity and accurate 

measures. These algorithms have been successfully applied to 

petroleum engineering fields such as production forecasting, 

history matching, reservoir characterization and EOR 

screening (Alvarado et al. 2002; Parada et al. 2012; Tarrahi et 

al. 2015). The proposed workflow in this paper includes the 

following tools: 

 

1- Data preparation tool: preparing the training data 

through guided experiments 

 

 Determining the most sensitive and effective 

design parameters (e.g. temperature, density, 

etc.)   

 Design of experiment (DOE), Latin Hypercube 

Sampling (LHS), or Monte Carlo sampling to 

produce the most representative and wide 

enough sample cases 

 

2- Prediction tool: building an intelligent data-driven 

prediction tool 

 Build a reliable prediction tool (regressor) 

through Machine Learning algorithms 

 Predict (and assess the uncertainty of) any new 

samples properties (e.g. rheological properties) 

 

3- Design tool: intelligent fluid design tool 

 Designing the desired fluid system based on the 

requested sample properties 

a. Performing the opposite of prediction tool 

and building a regressor to predict 

corresponding parameters of a suitable fluid 

system (through machine learning 

algorithms) 

b. Applying inverse problem methods to 

prediction tool and obtaining the desired 

fluid system 
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In the machine learning literature some of the most well-

known regression methods are: Linear Regression (Ordinary 

Least Square), Nonlinear Regression or Curve Fitting (e.g. 

Polynomial Regression), Logistic Regression, Ridge 

regression, Artificial Neural Network, Bayesian Network, 

Radial Basis Function (RBF) Network, Support Vector 

Machine (SVM), Gaussian Process Regression and  Kernel 

Regression (Duda et al. 2012; Theodoridis et al. 2010). In this 

paper we choose Gaussian Process Regression (GPR) 

algorithm to investigate its application in fluid characteristics 

estimation and fluid design and build an intelligent multi-

purpose prediction and design tool (Shadravan et al. 2015). 

Predicting the rheological profiles mud, spacer and cement 

slurries and maintaining proper rheological hierarchy will 

benefit long term zonal isolation, Shadravan et al. (2015). 

Figure 1 lists various types of fluid designs experiments 

which usually are pursued by a trial and error methods.   

 
Figure 1: Applications of the intelligent design tool for 

various experiments 

Shadravan et al. (2014) presented a model which could predict 

the rheological profiles of a micro-emulsion spacer fluid up to 

300 °F. This model was built based on Design of Experiments 

(DOE). DOE relies heavily on individual and joint statistics of 

fluid system parameters, and its implementation in fluid 

systems with many components requires huge investment in 

time and cost. DOE along with response surface methodology 

(RSM) are also not able to control certain variables, problems 

identifying all the variables that affect the process, and a lack 

of linearity in variables that makes it hard to identify optimum 

settings. These drawbacks tend to limit the frequency with 

which DOE is used to solve problems. Therefore in this paper, 

GPR method shows how to predict such properties for desired 

fluid design.  

The complexity and variations of downhole conditions, 

geology, additives (water, polymers, cement types, weighting 

agents, crosslinker, breaker, etc.), testing procedures, and 

experiment schedule could be all properly taken into account 

to construct a useful laboratory database for an intelligent fluid 

design tool, Lee et al. (2013). In this study, separate data silos 

for drilling fluids, spacers and cement slurries were created 

and used. Proper equipment calibration and competent 

laboratory personnel are also evidently valuable elements of 

successful fluid design. Figure 2 shows traditional trial and 

error fluid design and Figure 3 demonstrates the 

comprehensive intelligent machine learning fluid design 

workflow. 

 

 

Figure 2: Traditional arbitrary and trial-and-error-based fluid 

design procedure 

 

 

Figure 3: Schematic of the proposed intelligent integrated 

tools for guided experiment design, characteristic prediction 

and fluid system design 

 

Data-Driven Analytics for Fluid Characteristics 
Prediction and Optimal Design 

Rheology is a common experiment which is 

conducted on drilling, spacer and cement slurry fluids. This 

paper delineates the benefits of GPR as a powerful and robust 

machine learning algorithm to predict the rheological 

properties of a fluid as a simple example of the breath of 

Machine Learning methods application. Predicting such 

properties can be viewed as a regression analysis (a data-

driven approach) where the goal is to design the best linear or 

nonlinear regression function (or rule).  

We solved this problem by GPR machine learning 

method, which is well-established in computer science 

literature. The proposed algorithm eliminates arbitrary 

approach in making decisions, and provides accuracy and fast 

computation. This approach substitutes the need for days and 

weeks of testing in the laboratory with an intelligent and agile 

fluid design which could require only a few number of tests to 
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confirm the proposed compositions (additives) for the desired 

properties.    

In the parametric regression methods, a known 

regression function (e.g. polynomial, exponential, etc.) is 

defined in terms of finite number of unknown parameters 

which are estimated from the training data. In general since 

the nature of the underlying physical process (e.g. relation of 

rheological properties and fluid characteristics) is very 

complex, assuming a known and closed form for the 

regression function is a rigorous task. Therefore 

nonparametric regression methods are proposed that have no 

(or very little) a-priori knowledge of the form of the function 

that is being estimated. These methods allow the class of 

functions which the model can represent to be very broad 

(Bishop, 2006, Duda, et al. 2012, Theodoridis et al. 2010). 

Here we implement and apply Gaussian Process Regression 

that counts as one the most practical nonparametric regression 

methods. One of the advantages of Gaussian Processes 

application for machine learning is that the prediction or 

estimated value is probabilistic (Gaussian) so empirical 

confidence intervals and exceedance probabilities can be 

computed that might be used to refit (online fitting, adaptive 

fitting) the prediction in some regions of interest. Also the 

estimation and regression procedure is versatile i.e. different 

linear regression models and correlation models can be 

specified. 

Gaussian Process Regression for Data-Driven Machine 

Learning  

Gaussian process regression (GPR) is a nonlinear regression 

or interpolation technique that models the new estimated 

(interpolated) values based on Gaussian process determined by 

a covariance function (Williams & Rasmussen 2006). GPR is 

a statistical machine learning method which is also known as 

Kriging and is well established in Geostatistics and computer 

science literature (Deutsch & Journel 1992, Shi & Choi 2011). 

To estimate the corresponding value for the new input, GPR 

calculates the weighted average (linear combination) of the 

known values (training data) based on the correlation (or 

proximity) of the new input and the training data governed by 

the covariance function (Rasmussen, 2006). Providing the 

training data and the prior assumptions (e.g. covariance 

function) are suitable (Deutsch & Journel 1992), GPR or 

kriging is the best linear unbiased estimator (BLUE). In 

Geostatistics literature the spatial dependencies are 

represented by variaogram function instead of covariance 

function. In signal processing literature this estimation 

procedure is known as Kalman filtering which have been also 

applied to history matching problems (Tarrahi et al. 2013, 

2015). 

In our current experiment, there are 3 input 

parameters (fluid density, ingredient A content and 

temperature) and 6 output values (300, 200, 100, 60, 6, 3 RPM 

viscosities) and we have a set of experimental data points 

(training samples). 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎: {𝑋𝑖 , 𝑌𝑖},     𝑖 = 1,2, … , 𝑁 

𝑋𝑖 = 𝑖𝑡ℎ 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑛 × 1) 

𝑌𝑖 = 𝑖𝑡ℎ 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 (𝑚 × 1) 

(1) 

Where 𝑁 represents the number of experiments or the 

number of data points. In this study, 𝑛 and 𝑚 are 3 and 6, 

respectively. To perform Gaussian process regression, we 

consider one output at a time i.e. we construct seven GPR 

models for seven dial reading outputs. So the training data for 

each GPR model design is: 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝐷: {𝑋𝑖 , 𝑦𝑖},    𝑖 = 1,2, … , 𝑁 (2) 

Where 𝑦𝑖  is a scalar and represents one of the dial 

reading outputs. Each nonlinear regression function is a 

random sample (parametrized by the input variable) drawn 

from a joint Gaussian probability function given the training 

data set 𝐷. Our goal in GPR is to train a function 𝑓 from data 

𝐷. A Gaussian process is a prior (information) over functions 

𝑝(𝑓) that can be utilized for Bayesian regression (inference): 

𝑝(𝑓|𝐷) =
𝑝(𝑓)𝑝(𝐷|𝑓)

𝑝(𝐷)
 (3) 

Where 𝑝(𝑓|𝐷) shows the posterior probability of all the 

regression functions given the training data. 𝑝(𝑓) represents 

the prior probability on all the possible regression functions 

and 𝑝(𝐷|𝑓) is the likelihood function. In Bayesian inference 

context,  𝑝(𝐷) is only a scaling parameter which does not 

affect the intended posterior probability density function 

𝑝(𝑓|𝐷). 

The nonlinear regression function in GPR is a set of random 

variables indexed by a continuous parameter (e.g. time, space, 

temperature, etc.) which is also called random function 𝑓(𝑋). 

The assumption in GPR is that any set of regression functions 

has jointly Gaussian distribution with zero mean: 

𝑝(𝑓|𝑋) = 𝑁(0, 𝐶(𝑋)) = (2𝜋)−
𝑘
2|𝐶(𝑋)|−

1
2𝑒−

1
2

𝑓𝐶(𝑋)−1𝑓 (4) 

Where 𝐶(𝑋) is the covariance matrix and 𝑘 represents the 

dimension of function 𝑓 with respect to continuous parameter. 

Estimating the unknown target value 𝑦0 given the set of 

training 𝑦 presents a conditional probability function: 

𝑝(𝑦0|𝑦) = 𝑁(𝑦0̅̅ ̅, 𝜎𝑦0
) (5) 

The GPR estimation value is the mean of the above 

conditional probability density function. Basically GPR 

proposes a Gaussian probability density function (PDF) for the 

new estimated value which can be fully characterized by a 

mean and a standard deviation value. 

As a necessary preprocessing step to avoid scaling issues due 

to different input and output ranges, we apply data 

normalization and scaling to input and output values. Target or 

output values are assumed to be normal standard variables 

(resulted from a Gaussian distribution with zero mean and unit 

variance). Moreover the input values (input parameters) are 
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shifted and scaled to [0,1] interval. 

𝑋𝑠 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 

𝑌𝑠𝑛 =
𝑌 − �̅�

𝜎𝑌

 

(6) 

To define the spatial relation of the samples in the input space 

(in this study a 3D space), a covariance function is established:   

𝐶(𝑋𝑖 , 𝑋𝑗) = 𝑣𝑒𝑥𝑝(−ℎ𝑝) 

ℎ = √𝑔𝑇𝐿−1𝑔 

𝑔 = 𝑅(𝑋𝑖 − 𝑋𝑗) 

𝐿 = [

𝑙1 0 0
0 𝑙2 0
0 0 𝑙3

] = 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑋𝑖 , 𝑋𝑗 = 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 (3 × 1) 

(7) 

𝑙1, 𝑙2 and 𝑙3 are correlation lengths in three input 

directions. Matrix 𝑅 represent the rotation matrix in 3D which 

can be calculated based on the rotation angles around different 

axes (D'Orangeville et al. 2003). The combination of 𝐿 and 𝑅 

matrices determines the spatial correlation of fluid properties 

in matrix 𝑋. 𝑣 represents the variance parameter. In specific 

cases, where the parameter 𝑝 is equal 2, the resulted 

covariance is the squared exponential covariance function (or 

Gaussian) and if 𝑝 = 1, the exponential covariance function is 

reproduced. The parameters involved in defining the 

covariance function are called hyper parameters. By changing 

the hyper parameters the GPR estimator quality will change. 

In this study we tune 6 hyper parameters (three correlation 

lengths, three rotation angles and the power) through leave-

one-out cross validation (LOOCV) to obtain the optimal GPR 

estimator. In LOOCV, we assume one of the training data 

points is unknown and use the other 8 training data to design 

GPR estimator and estimate the unknown data point and then 

compare the estimated value with the true value. This 

procedure is repeated for all the outputs (6 viscosity readings) 

and for all the training data. In cross validation procedure, the 

performance measure of the GPR estimator is the average 

relative error. 

The following is the relation between semivariogram 

(popular spatial correlation representation in Geostatistics) and 

covariance function: 

𝛾(𝑋𝑖 , 𝑋𝑗) = 𝑣 − 𝐶(𝑋𝑖 , 𝑋𝑗) (8) 

To estimate the corresponding output 𝑦0 of the new input 

parameter 𝑋0, we use the Gaussian process interpolation (also 

called simple Kriging): 

𝑦0 = [

𝑦1

⋮
𝑦𝑁

]

𝑇

𝐶𝑛𝑛
−1𝐶𝑛𝑢 = ∑ 𝜆𝑖𝑦𝑖

𝑁

𝑖=1

 (9) 

𝐶𝑛𝑛 = [
𝐶(𝑋1, 𝑋1) ⋯ 𝐶(𝑋1, 𝑋𝑁)

⋮ ⋱ ⋮
𝐶(𝑋𝑁 , 𝑋1) … 𝐶(𝑋𝑁 , 𝑋𝑁)

]

= 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 

𝐶𝑛𝑢 = [
𝐶(𝑋1, 𝑋0)

⋮
𝐶(𝑋𝑁 , 𝑋0)

]

= 𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝑛𝑒𝑤 𝑖𝑛𝑝𝑢𝑡 

The estimated output is basically a linear 

combination of the training outputs where the coefficients are 

determined by the spatial configuration of the input (with 

respect to the training data) and the covariance function shape. 

One of the unique advantages of GPR for instance comparing 

to Artificial Neural Networks (ANN) is the ability to obtain 

the estimation error. GPR not only provides us with the 

estimated output at the new input value but also it is able to 

calculate its associated error or variance. With this capability 

we can specify how good each estimation is or determine the 

confidence of each estimation and decide if we need to 

perform new laboratory experiments. 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑦0 = 𝑣 − 𝐶𝑛𝑢
𝑇 𝐶𝑛𝑛𝐶𝑛𝑢 (10) 

This provides us with the estimation standard deviation and 

consequently the confidence interval associated with each 

estimation. It should be noted that GPR is an absolute 

estimator i.e. estimated values for the training data are equal to 

true outputs. After tuning using LOOCV the average 

minimum cross validation error is 10%. We obtained different 

hyper parameters (different covariance functions) for different 

viscosity outputs. For all the output viscosity readings, the 

obtained power parameter 𝑝 through cross validation is 2 so 

the preferred covariance function is the squared exponential 

covariance function. 

Since there are 3 input parameters and plotting each of the 

viscosity readings with respect to 3 independent input 

parameters is not very informative, for illustration purposes, 

we plotted the viscosity with respect to only two input 

parameters and kept the third one constant. In Figure 4 all of 

the predicted output values are plotted versus two pairs of the 

input parameters for mud, spacer and cement. For instance, 

first plot in Figure 4 shows the 3 RPM predicted viscosity of 

cement, mud and spacer with respect to temperature and 

ingredient of different material contents while their density is 

constant (lb/gal). The plotted surfaces are the nonlinear 

regression models resulted from GPR. Having this nonlinear 

regression function, we are able to predict the rheological 

properties of the new mud, spacer and cement samples prior to 

performing the confirmation laboratory experiment.  
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Figure 4: Nonlinear estimator resulted from GPR for different 

RPMs 
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Work flow execution for predicting mud, spacer and 

cement properties   

The following figures show the comprehensive 

procedure of experimental data importing, prediction with 

machine learning technique, visualization and finally fluid 

characteristics design. As shown in Figure 5, experimental 

fluid data can be manually or automatically imported to the 

design tool in the first step. Then in the prediction step 

(Figure 6), GPR based data-driven tool will be trained by the 

imported data and customized fluid characteristics plots can be 

visualized and their data can be exported. In the final step in 

Figure 7, the rheological characteristics of mud, spacer and 

cement are predicted and plotted based on their fluid system 

properties. 

 

 

Figure 5: Importing experimental data (training data) to smart 

data- driven fluid design tool 

 

 

Figure 6: Data-driven rheological properties estimation and 

visualization 

 

 

Figure 7: Predicting rheological properties of mud, spacer and 

cement: smart fluid system design 

Discussion 

Fluid compatibility is extremely important for cement 

job designs and especially offshore cementing. Predicting the 

fluid properties is beneficial to the operations cost 

effectiveness and success. Traditional fluid design methods 

(e.g. trial and error) are incapable of offering an agile 

comprehensive computation capability which is provided by 

machine learning algorithms. DOE along with RSM is a good 

method for data point selection to learn more about R&D and 

new products however it is limited and time consuming 

method and not flexible enough for agile decision making. 

GPR is a strong regressor which can suitably estimate the 

mud, spacer and cement properties. This paper showcased the 

strength of GPR in predicting the rheological properties of 

mud, spacer and cement. This is an important example through 

which GPR assisted maintaining the rheological hierarchy at 

different RPMs. A good rheological hierarchy would be a 

contributor to better friction pressure hierarchy and therefore 

less fluid intermixing and viscous fingering, better cement 

jobs and well integrity excellence.    

Conclusion 

Conventional fluid design methods such as trial and 

error, is not cost effective and lacks long-term vision to 

accumulate knowledge on mud, spacer and cement fluid 

systems. There is a need for a tool which is empowered by 

machine learning methodologies. This paper investigated an 

intelligent tool which is equipped with flexible machine 

learning algorithms. GPR unlike ANN honors the training data 

and offers a prior-free regression implementation. Furthermore 

GPR is unique in the sense of providing the estimation error 

and uncertainty assessment while predicting the fluid 

characteristics and designing a fluid system. The developed 

intelligent prediction and design tool is able to extract and 

relate any set of input parameters to output variables based on 

the provided training samples that can be both experiment and 

simulation results.   
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Nomenclature 
BHA Bottomhole assembly 

𝐶(𝑋)  Covariance matrix of input data 

𝐷  The complete training dataset 

𝑓  Possible regression function form 

𝑚  Dimension of output data vector 

𝑛  Dimension of input data vector 

𝑁  Total number of training data 

𝑋  Training input data 

𝑋𝑖 , 𝑋𝑗  Different input values 

𝑋𝑚𝑖𝑛  Minimum of 𝑋 

𝑋𝑚𝑎𝑥   Maximum of 𝑋 

𝑌  Training output data 

�̅�  Mean of 𝑌 

𝑦0  Unknown output 

𝑦0̅̅ ̅  Estimated mean of 𝑦0 

𝜎𝑦0
  Estimation error of 𝑦0 

𝜎𝑌  Standard deviation of 𝑌 
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