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Abstract 
Nowadays, oil industry turns to look for hydrocarbons in 

much more challenging locations such as mature depleted 

reservoirs and ultra-deep locations. The conventional high 

overbalance drilling may lead to some extreme problems in the 

cases of depleted and ultra-deep reservoirs. Using a special type 

of drilling fluid that capable of bridging along the walls of the 

well and withstands a high differential pressure is a novel 

solution for drilling depleted formations and ultra-deep wells 

securely. Drilling fluids properties of the high over-balanced 

water-based drilling fluid (HOBWBDF)   such as  plastic 

viscosity (PV), apparent viscosity (AV), flow behavior index 

(n) and consistency index (k) are very vital inputs in managing 

rig hydraulics, margins of surge and swab pressure, equivalent 

circulation density (ECD) and hole cleaning. Measuring drilling 

fluid rheological properties in the laboratory is a time-

consuming job and depending on specific equipment such as 

mud balance and rheometer. That is why measuring these 

properties on the well site is carried out only twice a day.  

The main goal beyond this work is to build novel empirical 

models that are capable of predicting the above-mentioned 

rheological properties of high over-balanced water-based 

drilling fluid (HOBWBDF) on real time. The models are built 

based on only two inputs which are the mud weight from the 

mud balance test and Marsh funnel viscosity measured by the 

Marsh funnel test. More than 1200 real field measurement 

points were used to feed an artificial neural network in order to 

develop these novel empirical models.  

The developed models using ANN technique showed a high 

accuracy for predicting the different drilling fluid rheological 

properties. The obtained results show maximum average 

absolute percentage error (AAPE) less than 8 % with a 

correlation coefficient higher than 93%. The main advantages 

of these models are their inexpensiveness as there is no need for 

additional equipment to be added to the rig site. Moreover, 

these models would greatly help the drilling engineers to 

manage the ECD, surge and swab pressure and hole cleaning 

which in return will be reflected positively on the drilling 

performance.  

Keywords; mud rheology, high-overbalanced drilling, 

ultra-deep gas wells, artificial intelligence, artificial neural 

networks (ANN).  Introduction 

Introduction  
American Petroleum Institute (API) stated that the drilling 

fluids can be defined as circulating fluid designed to be used 

during the rotary drilling operations and perform some specific 

functions, Fink (2015). The mechanical and geological 

functions of the drilling fluids can be summarized as carrying 

the cuttings away from the bit, cooling and lubricating the 

drilling tools and the side walls of the well and creating a quick 

impermeable filter cake to seal-off all the porous formations as 

rapidly, effectively and permanently as possible. For heaving 

shaly intervals, drilling fluids are used to stabilize and support 

the formation in order to prevent them from flowing into the 

well. Moreover, drilling fluids are the main source for the high 

hydrostatic pressure needed for the overbalance drilling applied 

to hinder any fluids or solids from entering the formation as 

well as prevent the hydrocarbons flow towards the well, 

Abraham (1933), Rabia (2001), Bybee (2004) and Mahmoud et 

al. (2018). Drilling fluids have to be non-damaging to the 

porous strata containing the hydrocarbons, non-hazardous to 

the surroundings and the crew dealing with them and corrosion 

and wear-safe for the drilling equipment Caenn and Chillingar 

(1996) and Fink (2015) . 

Both aqueous and non-aqueous drilling fluids are 

considered as non-Newtonian fluids. Since then, the viscosity 

of the drilling fluids depends on the applied shear rates at a 

specific temperature and pressure. In order to describe the 

behavior of the drilling fluids over a range of shear rates, 

rheological models are intensively used. These models provide 

some practical ways to predict the drilling fluids behavior under 

different pumping (pressure) conditions. The most commonly 

used rheological models are; Bingham Plastic Model, Power 

Law Model and Herschel-Bulkley (yield-power law [YPL]) 

model (Rabia 2001) and  Abegunrin et al. (2016). 

The rheological properties of the drilling fluid are some 

reflections of its physical and chemical characteristics. The 

main properties of the drilling fluid are measured and reported 

on a daily basis while drilling. The mud weight test and the 

Marsh funnel viscosity test are simple short-time tests that are 

frequently carried out in the field every 15- 20 minutes. Unlike 

the complete mud rheology tests which are considered much 

more tiresome, time-consuming, and carried out only twice per 

day. Properties such as mud weight (MW), Marsh funnel 
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viscosity (MF), plastic viscosity (PV), yield point (YP), flow 

behavior index (n) and flow consistency index (K) distinguish 

the character of each drilling fluid and considered the main 

inputs for the different rheological models. In addition, these 

different rheological properties are used to calculate rig 

hydraulics, surge and swab pressure profiles and hole cleaning 

efficiency.  

Drilling fluid density or simply the mud weight (MW) is 

used principally to control the hydrostatic pressure (HP) exerted 

by the drilling fluid against the wellbore Akpabio et al. (2015). 

Marsh Funnel is one of the classical ways to measure the 

drilling mud viscosity in a simple and quick manner. It is a very 

simple and reliable way to have an indication about the fluid 

viscosity especially in field conditions Pitt (2000) and 

Almahdawi et al. (2014). 

Plastic viscosity of the drilling fluid is a very vital parameter 

in the drilling operations. As the solid content of the drilling 

fluid increases, plastic viscosity increases in return. An increase 

in plastic viscosity leads to an increase in the equivalent 

circulation density (ECD), surge and swab pressures and hence 

a higher possibility for differential sticking problem. On the 

other hand, plastic viscosity increase will lead to a reduction in 

the ROP Kersten (1946) and Paiaman et al. (2009). Adams and 

Charrier (1985) stated that the attractions between the solid 

antiparticles of the drilling fluid determine its yield point (YP). 

It was also mentioned that chemical dispersants, thinners and 

viscosifiers can control the drilling fluid yield point (YP).  

The power law that is used to describe the behavior of the 

pseudo plastic fluids is used to represent the performance of the 

drilling fluid. This law can be described by Eq. (1);  

𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 =  𝐾 (𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒)𝑛                                      (1) 
Where (K) is called the fluid consistency index and (n) is the flow 

behavior index. 
Viscosity value of the drilling fluid is directly proportional 

to the K value as K value can represent the thickness of the 

fluid. The higher the K, the higher the fluid viscosity. The flow 

behavior index (n) is used to describe the degree of fluid 

deviation away from the standard Newtonian behavior. In other 

words, n is used to represent the degree of the fluid non-

Newtonian behavior. For the drilling fluids that act according 

to the pseudo plastic fluids behavior, the standard value of n is 

between zero and 1. Where the value is 1 for Newtonian fluids 

behavior and less than 1 for dilatant fluids. Gray et al. (1980) 

 

High Over-Balanced Water-Based Drilling Fluid  
Nowadays, oil industry turns to look for hydrocarbons in 

much more challenging locations such as mature depleted 

reservoirs and ultra-deep locations. The conventional high 

overbalance my lead to some extreme problems in the cases of 

depleted and ultradeep reservoirs. Problems such as lost 

circulation and stuck pipe are most probably encountered while 

drilling through depleted reservoirs. Due to the very low pore 

pressure in the depleted formation in the reservoirs, drilling a 

well to a specific target without damaging the formation is not 

possible Santos et al. (2003). 

The conventional solution of this problem is to use an 

additional casing string to isolate the depleted/low pressure 

formation. However, this solution is costly and may be not 

applicable in some cases where the well diameter has reached 

its lower limit. Another more applicable solution to this is to 

use a special type of drilling fluid that capable of bridging along 

the walls of the well and withstands a high differential pressure. 

Figure (1) shows the mechanism of a high overbalance bridging 

mud that capable of tolerating a very high differential pressure 

in depleted reservoirs and through high porous and permeable 

formations with potentially high pore pressure. Using this 

(HOBWBDF) will secure the drilling operations whether above 

or through the target reservoir section as illustrated by Figure 

(1). 

The main goal of this research is to create an empirical 

correlation models using artificial neural network (ANN) that 

is capable of predicting the rheological properties of this type 

of drilling fluid (HOBWBDF) in a real-time using the most 

frequent measured mud weight and Marsh funnel viscosity.  

The Prediction of mud parameters of (HOBWBDF) at a real 

time will help in calculating the drilling hydraulics with high 

accuracy in real time, predicting the surge and swab pressure 

profiles, getting a continuous indication for the efficiency of 

hole cleaning and acquiring the ability to predict and cure 

different drilling problems like pipe sticking. Using only the 

measured mud weight and Marsh funnel viscosity as inputs for 

this model makes it a very field applicable one. The mud weight 

test and the Marsh funnel viscosity test are simple short-time 

tests that are frequently carried out in the field every 15- 20 

minutes. Unlike the complete mud rheology tests that are 

considered much more tiresome, time-consuming, and carried 

out twice per day only. 

 

Artificial intelligence applications in oil industry 
McCarthy (2007) defined artificial intelligence (AI) as the 

technique of designing computer programs that enable the 

machines to act intelligently the same way as human being. AI 

can make analysis of big data that human brains cannot handle 

and interpret the different trends in order to make a forecast for 

future possibilities in no time and effort. This, in return, reduces 

the cost and errors associated with different operations as well 

as enhances their efficiency. The AI applications in the oil and 

gas filed is so abundant in all the industry aspects. Popa and 

Cassidy (2012) and Bello et al. (2015) agreed on the fact that 

the first applications of AI in the oil industry go back to the 

early 1990s. 

Artificial neural networks (ANN) is a branch from the AI 

science. ANN can be considered as an emulation for the human 

neural system as it can be used to mimic the human intelligent 

attitudes Nakamoto (2017). In addition to simple linear 

problems, ANN is capable of finding a solution for complicated 

non-linear problems. The main consisting element of an ANN 

is called neuron. Each ANN must contain at least three main 

layers. The first layer represents the inputs and is called the 

input layer. The second layer, which could be subdivided into 

more than one layer, is called the hidden layer. The final layer 

represents the outputs and is called the output layer. The data is 

trained within the ANN throughout a training function such as 

(trainlm,trainbr,.. etc). At the same time, data is transferred 
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from the hidden layer to the output layer throughout a transfer 

function. The most common transfer functions are hardlim, 

purelin and logsig functions. Figure (2), illustrates the general 

schematic of the ideal ANN Demuth et al. (2016). 

Doraisa et al. (1998) examined the possibility of using 

artificial neural networks (ANN) as a tool for optimizing field 

development plans. Lim and Kim (2004) used the fuzzy logic 

technique to determine some reservoir properties like porosity 

and permeability from well logs. The generated model showed 

a better estimation for the predicted data more than the 

previously used computer methods. Ozbayoglu and Ozbayoglu 

(2009) used both ANN backpropagation and Jordan/Elman 

techniques for the determination of frictional pressure losses 

(FPL) and flow patterns (FP) with high accuracy up to 0.005 

mean square error (MSE).  

Elkatatny and Mahmoud (2017) used the ANN (white box) 

for the first time to predict the oil formation volume factor. 

Their model showed a tremendous accuracy with R2 of 0.997 

and AAPE of less than 1%. Mahmoud et al. (2017) developed 

an empirical correlation using ANN model to determine the 

(TOC) of the Barnett and Devonian shales. The produced 

correlation showed a high accuracy with R2 of 0.93 and 0.89 for 

Barnett and Devonian shale respectively. 

Since the issue of determining the mud rheological 

properties has a great importance in the drilling field, So many 

researchers tried to implement the applications of AI for 

predicting the various properties of drilling fluids. Osman and 

Aggour (2003) used ANN backpropagation technique to predict 

the density of both OBM and WBM. The model input 

parameters were initial mud density at surface conditions, 

temperature, pressure and drilling fluid type. Razi et al. (2013) 

used the feed-forward multilayer perceptron (FFMLP) neural 

network to predict the rheological properties of water base mud 

(WBM). Shear rate, temperature and concentration were used 

as model inputs. Adesina et al. (2015) worked on the prediction 

of the downhole density for some environmentally friendly 

OBM such as Diesel, Jatropha and Canola. The authors used 

temperature only as an input for their model. Elkatatny et al. 

(2016) and Elkatatny (2017) used the ANN technique to 

intensively predict the mud rheological properties for different 

types of drilling fluids such as KCl water based drilling fluid 

and invert emulsion drilling fluid.  

For the high-overbalanced water-based drilling fluid 

(HOBWBDF), it will be the first time to develop models 

capable of predicting the rheological properties of this kind of 

drilling fluid.  

 

Methodology 
More than 1200 data points of the measured mud weight 

(MW) of the high overbalance drilling fluid along with the 

measured Marsh funnel time viscosity (MF), measured plastic 

viscosity (PV) and measured yield point (YP) are used for 

developing and validating the ANN model. The data points 

come in the field units which are pound per cubic foot (PCF) 

for the mud weight, sec/quart for the Marsh funnel viscosity, cP 

for the plastic viscosity and lb/100 ft2 for the yield point. A 

sample of the data is available in the Table (1). 

Since this data set is coming from the field where the human 

measurement error is very common and the efficiency of mud 

separation system controls a lot of measured mud properties, 

the data has to be filtered first. The filtration process was based 

on removing the out-scaled data points and the values that do 

not follow the physical concepts that the drilling fluids obey.  

The viscometer readings R300 and R600 were calculated from 

the YP and PV values based on the following Eqs. (2 & 3). 

Then, the flow behavior index (n) could be calculated through 

Eq. (4), Savins and Roper (1954) 

𝑅300 = 𝑌𝑃 + 𝑃𝑉                                                   (2) 

𝑅600 = 𝑃𝑉 +  𝑅300                                        (3) 

𝑛 = 3.32 ∗  log (
𝑅600

𝑅300

)                                         (4) 

 
Data statistical analysis 

Data statistical analysis was carried out to determine the 

minimum, maximum, mean, range, standard deviation, 

skewness and kutosis of the data that will be used. The results 

of this analysis is shown in Table (2). Mud weight varies 

between 64-155 (PCF), Marsh funnel viscosity varies between 

42 -120 (sec/quart), plastic viscosity varies between 9-63 (cP), 

yield point varies between 15 -65 (lb./100ft2), flow behavior 

index (n) varies between 0.32-0.76, flow consistency index (k) 

varies between 0.54-4.84, R300 values vary between 35-125 

(rpm) and finally, R600 values vary between 44-185 (rpm).  The 

data range and arithmetic mean can also be found in Table (2).  

In order to determine the relation between the input and 

output data, correlation coefficient analysis was carried out and 

the results are shown in figure (3). The results show that almost 

all the mud rheological parameters have a stronger relationship 

with the mud weight than the Marsh funnel viscosity. 

 

Building the empirical models 
The final data set was divided into 70% for the model 

training and the rest 30% for the model validation and testing. 

About 500 combinations of the data were tried to reach the 

optimum data sets for both training and testing. Different 

combinations of the number of neurons and the number of 

hidden layers were tried to achieve the minimum average 

absolute percentage error (AAPE), the highest correlation 

coefficient (R) and the highest coefficient of determination (R2) 

between the target and output data. Several training and transfer 

functions were examined using the MATLAB toolbox. 

Once the desired results are attained, the network is saved 

and its weights and biases are extracted. Using the saved 

network structure and the resulting weights and biases, the final 

empirical model is established in order to reproduce the same 

results without the need to use the original network again. 

   

Results and discussion  
The ANN model used to predict the mud viscometer 

reading at 300 rpm (R300) contained only one hidden layer with 

22 neurons. The training function used was “trainlm” with a 

transfer function of “tansig”. The AAPE of the training and the 

testing process are 2.86% and 3.70% respectively. While the 

data shows a perfect match with a correlation coefficient (R) of 

0.98 and 0.97 for training and the testing respectively, see 
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figures (4 & 5). 

Since the transfer function used is the “tansig” function, all 

the inputs are normalized by the network between -1 and 1 

according to Eq. (5). So, therefore, after extracting the weights 

and biases from the network, this normalization should be 

reversed again to find the denormalized (original) value of the 

output.  

𝑋𝑛 (−1:1) = 2 (
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

) − 1                           (5) 

The extracted weights and biases for the R300 model can be 

found in Table (3). Using these values of the weights and biases, 

the mathematical model for predicting the viscometer reading 

R300  can be constructed by Eq. (6). In order to reverse the 

normalization occurred by Eq. (6) The denormalized R300 

values could be found from Eq. (7).  

𝑅300_𝑛 =  [∑ 𝑊2𝑖 (
2

1 + 𝑒−2(𝑊1𝑖,1 𝑀𝑊𝑛+𝑊1𝑖,2 𝑀𝐹𝑛+𝑏1𝑖)
− 1)

𝑁

𝑖=1

]

+ 𝑏2                                                       (6) 

𝑅300 = 45.483 ∗ 𝑅300𝑛
+ 87.483                              (7) 

 

Where, R300_n, MWn and MFn are the normalized values of R300, MW 

and MF respectively. N is the optimized total number of neurons, W1 

is the optimized weight between the inputs and the hidden layer, b1 is 

the bias optimized for the hidden layer, W2 is the optimized weight for 

the output layer and b2 is its optimized bias.  

For the R600 prediction, almost the same ANN model 

parameters for R300 were used. The network consisted of one 

single hidden layer with 22 neurons. The “trainlm” function 

used as a data training function while the “tansig” function used 

as a transfer function. The AAPE of the training and the testing 

process are 3.5% and 4.80% respectively.  While the model 

comes with a high correlation coefficient (R) between the actual 

and the predicted values of R600 of 0.98 and 0.96 for the training 

and testing sets respectively, see figures (6 & 7). 

Since the transfer function for the R600 model is the “tansig” 

function, the final model could be constructed using the 

extracted network optimized weights and biases on the form of 

Eq. (8). The extracted weights and biases for the R600 are shown 

in Table (4). Use Eq. (9) to obtain the denormalized (original) 

value of R600.  

𝑅600_𝑛 =  [∑ 𝑊2𝑖 (
2

1 + 𝑒−2(𝑊1𝑖,1 𝑀𝑊𝑛+𝑊1𝑖,2 𝑀𝐹𝑛+𝑏1𝑖)
− 1)

𝑁

𝑖=1

]

+ 𝑏2                                                          (8) 

𝑅600 = 65.728 ∗ 𝑅600𝑛
+ 117.991                                (9) 

 

Plastic viscosity values (PV) were predicted using the ANN 

model which give a high correlation coefficient of 0.96 and 0.94 

for the training and testing stages respectively. The AAPE of 

the training and testing respectively were 5.6% and 7.7% only. 

See figures (8 &9). The emperical model that is based on the 

extracted weights and biases of the ANN to calculate PV can be 

described by Eq. (11). The coefficients for Eq. (10) can be 

found in Table (5). The final denormalized value of PV can be 

calculated from Eq. (11).   

𝑃𝑉𝑛 =  [∑ 𝑊2𝑖 (
2

1 + 𝑒−2(𝑊1𝑖,1 𝑀𝑊𝑛+𝑊1𝑖,2 𝑀𝐹𝑛+𝑏1𝑖)
− 1)

𝑁

𝑖=1

]

+ 𝑏2                                                        (10) 

𝑃𝑉 = 25.935 ∗ 𝑃𝑉𝑛 + 35.5089                                        (11) 

 
Another critical rheological parameter which is the flow 

behavior index (n) was successfully predicted using only the 

mud weight and Marsh funnel viscosity by the ANN technique. 

Almost the same model parameters used for the prediction of 

R300 and R600 were used for the prediction of (n). The model 

comes with a high correlation coefficient (R) between the actual 

and the predicted values of (n) of 0.93 and 0.94 for the training 

and testing sets respectively. The AAPE of 2.5% for both 

training and testing, see figures (10 & 11). 

The emperical model that is based on the extracted weights 

and biases of the ANN to calculate (n) can be described by Eq. 

(12). The coefficients for Eq. (12) can be found in Table (6). 

The final denormalized value of PV can be calculated from Eq. 

(13).  

  

𝑛𝑛 =  [∑ 𝑊2𝑖 (
2

1 + 𝑒−2(𝑊1𝑖,1 𝑀𝑊𝑛+𝑊1𝑖,2 𝑀𝐹𝑛+𝑏1𝑖)
− 1)

𝑁

𝑖=1

]

+ 𝑏2                                               (12) 

𝑛 = 0.2183 ∗ 𝑛𝑛 + 0.5403                                  (13) 
 

An ANN model was developed following the same 

procedures of the above-mentioned models to predict the 

apparent viscosity (AV) from both mud density and Marsh 

funnel time. The model shows a high accuracy for predicting 

the value of AV.  The correlation coefficient (R) between the 

original and predicted (AV) values is 0.98 for all the data set 

(training and testing) with AAPE of only 3.96% see figure (12)  

The mathematical model derived from the ANN for calculating 

the AV can be described by Eq. (14). The coefficient of Eq. (14) 

can be found in Table (7). For denormalizing the values of 

(AV), we may use Eq. (15).  

𝐴𝑉𝑛 =  [∑ 𝑊2𝑖 (
2

1 + 𝑒−2(𝑊1𝑖,1 𝑀𝑊𝑛+𝑊1𝑖,2 𝑀𝐹𝑛+𝑏1𝑖)
− 1)

𝑁

𝑖=1

]

+ 𝑏2                                                    (14) 

𝐴𝑉 = 31.224 𝐴𝑉𝑛 ∗ +58.889                                     (15) 

 

Model Validation: 
The developed ANN models can be validated by predicting 

the value of fluid flow consistency index (k) by using Eq. (16). 

The predicted (k) values which are considered based on the 

ANN models of (R600) and (n) show a good match with the 

actual calculated (k) values with root mean square error 

(RMSE) of 0.18 only as shown in figure (13).  

𝐾 =  
𝑅∗

600

1022𝑛∗                                                        (16) 
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Where 𝑅∗ and  𝑛∗ are the predicted values of R600 and (n) using 

ANN technique.  
 

This validation proves the accuracy and applicability of the 

developed ANN model to acquire the different mud rheological 

properties of the high-overbalance fluid like plastic viscosity, 

apparent viscosity, yield point, fluid flow index and consistency 

index. All these different outputs could be obtained using the 

devolved model at real time using only the frequently measured 

mud weight and Marsh funnel viscosity.  

 
Conclusions 

In this research, an ANN technique was used to generate 

empirical models that are capable of predicting the rheological 

parameters of high-overbalance drilling fluid at a real time. The 

models inputs are more than 1200 real field measured points of 

mud weight and Marsh funnel viscosity. The highest AAPE for 

all the predicted parameters was only 7.7% and the least 

correlation coefficient was as high as 0.93. This proves the high 

capability of ANN to efficiently predict the rheological 

parameters of the (HOBWBDF).  

Using these models with the (HOBWBDF) will make the 

drilling of ultra-deep wells that penetrate high porous depleted 

formations go smoothly without so much interrupting drilling 

problems. Since this developed model is not expensive and does 

not require any additional requirement, it will be so practical 

and helpful for the drilling engineers to use it in the rig site. 
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Appendix 
 

 

 Figure 1: Drilling through depleted formations using (HOBWBDF) 

 

 

Figure 2 Illustration scheme for an ideal ANN with single hidden layer 
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  Figure 3 Correlation coefficients between inputs and outputs   

  

Figure 4: The relation between the actual and 

predicted R300 (Training stage) 

 

Figure 4: The relation between the actual and 

predicted R300 (Testing stage) 
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Figure 6: The relation between the actual and predicted 

R600 (Training stage) 

Figure 7: The relation between the actual and 

predicted R600 (Testing stage) 

Figure 8: The relation between the actual and predicted 

PV (Training stage) 

Figure 9: The relation between the actual and 

predicted PV (Testing stage) 
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Figure 12 The comparison between the actual and predicted (AN) values using ANN model for both training 

and testing data 

 

Figure 11 The relation between the actual and 

predicted (n) factor (Testing stage) 
Figure 10 The relation between the actual and 

predicted (n) factor (Training stage) 
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Table 1 Sample of field data for High-overbalanced water-based drilling fluids (total of 1263 data points). 

Mud Density, 

lb/ft3 
Funnel Viscosity, 

sec/quart 
Plastic Viscosity, cP Yield Point, lb/100 

ft3 

70 47 17 27 

76 48 18 28 

78 48 18 27 

87 48 20 37 

89 60 26 28 

90 66 38 33 

93 55 32 26 

100 85 34 30 

105 67 38 27 

120 74 47 37 

 

Table 2 Statistical analysis of the High-overbalanced water-based drilling fluid data 

 MW MF PV YP n k R300 R600 

min 64.00 42.00 9.00 15.00 0.32 0.54 35.00 44.00 

max 155.00 120.00 63.00 65.00 0.76 4.84 125.00 185.00 

arithmetic mean 110.47 62.85 38.11 30.04 0.63 1.37 68.15 106.26 

range 91.00 78.00 54.00 50.00 0.44 4.30 90.00 141.00 

Figure 13 the comparison between the actual and predicted (k) values with RMSE of 0.18 
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standard 

deviation 
22.79 9.93 10.11 4.69 0.06 0.52 12.78 22.56 

Skewness 0.15 0.44 -0.14 0.30 -1.25 2.29 -0.06 -0.10 

Kurtosis 1.75 4.17 2.60 7.06 5.33 11.57 2.84 2.58 

 

 

 

 

Table 3 Coefficients for R300, Eq. (6) 

Hidden 

Layer 

Neurons (N) 

Weight Between Inputs and 

Hidden Layer (W1) 

Hidden Layer 

Biases (b1) 

Weight Between 

Output and hidden 

Layer (W2) 

Output Layer 

Biases (b2) 

1 2 

1 4.098504 4.896601 -6.83719 1.024568 -0.388 

2 -4.20754 5.35171 5.390523 -0.25181 

3 3.463057 -5.05282 -6.06654 -0.30987 

4 -6.66745 2.245366 4.645837 0.379793 

5 -5.62864 2.791305 2.385475 -0.3678 

6 -0.97671 7.426166 3.866751 0.046326 

7 -2.9753 -5.61467 2.881258 -1.23436 

8 1.665418 -5.38846 -1.27591 1.063036 

9 -2.23461 7.376363 1.672297 0.702791 

10 -3.52824 -0.0558 -0.35922 1.022886 

11 5.073362 5.036049 0.932776 -0.8721 

12 3.252689 -5.88784 0.995759 0.055886 

13 9.226587 0.740876 2.87064 0.588285 

14 4.024253 5.671599 3.189117 1.977344 

15 -2.74324 -5.21002 -1.01249 -0.19142 

16 6.137072 5.20283 0.870462 0.838781 

17 6.919352 4.924533 5.889454 0.556071 

18 -7.50653 -3.20921 -4.65171 0.797103 

19 -5.01807 -7.46349 -4.16148 1.426024 

20 4.576175 -4.57061 4.809655 1.013717 

21 -4.96351 4.186576 -5.8989 -0.622 

22 -4.50142 -6.29802 -8.59083 -0.23875 
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Table 4 Coefficients for R600 Eq. (8) 

Hidden 

Layer 

Neurons 

(N) 

Weight Between Inputs and 

Hidden Layer (W1) 

Hidden Layer 

Biases (b1) 

Weight Between 

Output and hidden 

Layer (W2) 

Output Layer 

Biases (b2) 

1 2 

1 4.121 4.901 -6.807 0.514 0.341 

2 -4.974 3.480 6.141 -0.847 

3 2.109 -5.479 -5.627 -1.593 

4 -7.239 3.944 3.086 -0.596 

5 -4.170 4.887 4.075 -1.200 

6 -1.700 8.815 3.181 -1.124 

7 -5.083 -3.476 1.439 1.032 

8 2.719 -5.020 -3.452 -1.431 

9 -1.534 7.210 2.513 1.509 

10 -4.425 3.708 1.260 -0.572 

11 5.103 4.812 -0.508 0.504 

12 3.184 -4.801 0.044 0.028 

13 6.690 -1.337 1.967 0.463 

14 4.057 5.941 2.642 0.742 

15 -2.678 -5.554 -2.594 0.785 

16 6.334 0.425 0.195 -0.742 

17 4.997 5.236 4.587 0.907 

18 -9.357 -3.250 -5.476 0.842 

19 -1.387 -6.128 -3.940 0.269 

20 7.218 -2.910 4.351 0.252 

21 -4.787 4.398 -6.378 0.791 

22 -0.213 -6.311 -6.927 0.475 
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Table 5 Coefficients for PV Eq. (10) 

Hidden 

Layer 

Neurons 

(N) 

Weight Between Inputs and 

Hidden Layer (W1) 

Hidden Layer 

Biases (b1) 

Weight Between 

Output and hidden 

Layer (W2) 

Output Layer 

Biases (b2) 

1 2 

1 4.079 4.898 -6.851 0.308 0.611 

2 -3.695 6.454 5.691 -1.283 

3 1.890 -4.632 -3.843 -1.415 

4 -7.111 4.031 3.660 -0.790 

5 -3.326 5.070 4.229 0.532 

6 -2.088 9.197 3.317 -1.156 

7 -5.326 -3.619 1.225 0.969 

8 2.910 -6.390 -1.865 0.750 

9 -2.202 7.477 2.460 1.976 

10 -5.865 3.640 0.988 -0.191 

11 5.521 5.933 -0.279 0.478 

12 2.231 -5.230 0.254 0.057 

13 7.016 -1.396 2.140 0.394 

14 4.852 4.667 2.997 -0.164 

15 -3.571 -5.613 -2.276 -0.574 

16 6.212 1.269 0.627 -0.476 

17 5.583 4.463 4.257 1.354 

18 -8.825 -3.880 -5.498 1.207 

19 -3.482 -6.816 -3.316 0.453 

20 6.705 -3.903 3.799 0.217 

21 -4.791 4.486 -6.451 1.244 

22 -0.289 -7.094 -6.282 -0.172 
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Table 6 Coefficients for “n” Eq. (12) 

Hidden 

Layer 

Neurons 

(N) 

Weight Between Inputs and 

Hidden Layer (W1) 

Hidden Layer 

Biases (b1) 

Weight Between 

Output and hidden 

Layer (W2) 

Output Layer 

Biases (b2) 

1 2 

1 5.109 4.094 -6.580 0.645814 0.1802 

2 -4.830 5.734 7.493 1.686524 

3 -2.406 4.021 4.637 -2.66526 

4 7.867 -0.158 -3.755 -0.85947 

5 -1.608 -6.354 4.073 0.408485 

6 3.414 5.542 -3.728 0.051887 

7 -4.016 -4.986 3.435 0.249771 

8 8.003 1.054 -2.579 1.523527 

9 -3.554 3.178 0.507 -1.69304 

10 -5.373 -4.110 0.955 -0.20372 

11 5.508 1.448 -1.092 -1.46176 

12 10.067 -2.986 0.243 -1.05758 

13 6.747 0.180 1.735 0.731758 

14 5.824 -0.869 1.788 -1.57417 

15 4.404 -3.299 2.180 1.041844 

16 2.768 5.853 1.751 0.367618 

17 -3.621 -9.563 -6.210 -0.44991 

18 1.333 -6.633 3.532 -1.01984 

19 -4.423 -6.231 -5.580 0.996064 

20 2.732 2.325 3.265 4.076742 

21 -6.527 -1.040 -5.286 2.233129 

22 0.412 -6.462 6.657 0.402873 
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Table 8 Coefficients for AV Eq. (14) 

Hidden 

Layer 

Neurons (N) 

Weight Between Inputs and 

Hidden Layer (W1) 

Hidden Layer 

Biases (b1) 

Weight Between 

Output and hidden 

Layer (W2) 

Output Layer 

Biases (b2) 

1 2 

1 3.997 4.899 -6.933 0.875832 0.108 

2 -5.260 4.547 5.730 0.27323 

3 0.810 -4.920 -4.189 0.280995 

4 -5.370 3.882 4.294 -0.98946 

5 -6.552 3.560 4.657 0.685235 

6 -1.255 7.408 3.860 0.132406 

7 -6.610 -2.276 3.285 0.704341 

8 2.626 -5.489 -2.958 -0.35442 

9 -2.171 7.149 1.844 0.316494 

10 -3.646 3.741 1.891 -0.52779 

11 3.423 4.076 -1.522 0.779755 

12 1.329 -3.234 -1.023 1.05767 

13 4.252 -5.120 1.575 0.043673 

14 4.645 4.969 2.457 0.149744 

15 -2.621 -6.504 -2.003 -0.20726 

16 6.743 -0.765 0.161 -0.7113 

17 8.236 2.566 4.525 -0.7422 

18 -7.499 -1.318 -2.695 -0.48219 

19 -5.274 -5.279 -5.029 -0.49451 

20 5.226 -4.400 5.003 0.915248 

21 -4.817 3.797 -6.474 0.507709 

22 -0.268 -7.216 -5.841 -0.38506 

 

 

 


