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Abstract 
Formation fracture pressure is a critical parameter affecting the 

efficiency and economy of the drilling operations. The 

knowledge of the fracture pressure is significant to control the 

well since it will assist in avoiding problems associated with the 

drilling operations such as fluid loss, kicks, fracture the 

formation, differential pipe sticking, heaving shale, and 

blowouts . Thus, it is essential to predict fracture pressure 

accurately prior to start the drilling process to prevent these 

issues.  

Many models are used to estimate the fracture pressure either 

from well logs or formation strengths. However, these models 

have some limitations such as some of the models can only be 

used in clean shales, applicable only for the pressure generated 

by under-compaction mechanism and some of them are not 

applicable in unloading formations. Few papers used artificial 

intelligence (AI) to estimate the fracture pressure. In this study, 

real field data contain only real-time surface drilling parameters 

were utilized to train the radial Basis function (RBF) to predict 

the fracture pressure. The predictability of the developed RBF 

model was compared with other fracture pressure models such 

as Pennebaker model 

The results indicated that RBF predicted the fracture pressures 

with an excellent precision where the coefficient of 

determination (R2) is greater than 0.99. RBF model 

outperformed the available fracture models by a its high 

accuracy and simple prediction of fracture pressure where it can 

predict the fracture pressure from only the real time surface 

drilling parameters, which are easily available.  
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Introduction 

In drilling, it is significant to predict the fracture pressure. It has 

a direct impact on the drilling effectiveness and the operations 

of the well such as wellbore planning, analyses of a stable 

wellbore, casing strategy, drilling fluid designs, drilling 

processes and structure optimizing (Hu et al., 2013). A 

knowledge of fracture pressure is significant in the selection of 

production and injection; knowing how hydrocarbons migrate; 

and avoiding problems associated with pressure and drilling 

operations (Keshavarzi & Jahanbakhshi, 2013).  

Formation will be fractured when the mud hydrostatic pressure 

exceeds the critical fracture pressure. Thus, fracture pressure 

can affect the well plan in many areas such as mud weight 

design, cement preparation and casing design (Mitchell et al., 

2011). The wrong prediction of fracture pressure may lead to 

dangerous problems such as failure and lost circulation that can 

cause kick and blowout (Adams, 1985). Fracture pressure is 

generally reported as the equivalent mud weight in ppg, 

pressure in psi, or pressure gradient in psi/ft.  

 There are two methods to measure the fracture pressure. One 

of them is the direct approach that relies on computing the 

needed pressure to crack the formations. This approach depends 

on the Leak off Teat (LOT) that is a regular step where the 

wellbore is pressurized by utilizing the drilling mud until it 

cracks the formation (Sadiq and Nashawi, 2000). The indirect 

method depends on utilizing empirical models to estimate the 

fracture pressure (Hossain & Al-Majed, 2015).  

 Many correlations and models were developed to predict 

fracture pressure from various parameters such as well logs, 

drilling parameters, or formation strength. Hubbert & Willis 

(1957) introduced a model to estimate the fracture pressure in 

zones of normal faults. They stated that fracture pressure is 

mainly affected by formation pressure and overburden stress. 

The lower limit of the fracture pressure was assumed to be 33% 

of the overburden stress while the upper limit of the fracture 

pressure was assumed to be 50% of the overburden stress. 
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Matthews and Kelly (1967) developed an equation to predict 

the fracture pressure by proving that the matrix stress 

coefficient generally relies on the depth and formation pressure.  
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Pennebaker (1968) modified the matrix stress coefficient of 

Matthews and Kelly (1967) by considering the depth and 

formation type instead of pore pressure. 
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Anderson et al. (1973) introduced an empirical equation to 

predict the fracture pressure as a function of the overburden 

stress, depth, Poisson's ratio, formation pressure, and the 

compressibility ratio of the porous to bulk rock matrix. 

Anderson model depends on Biot's strain and stress relations. 

Pfp = αPf +
2γ

1 − γ
 (Pob − α Pf) 

Where: Pfp is the fracture pressure (psi), Pf is the formation 

pressure (psi), Pob is the overburdened stress (psi), α is the 

compressibility ratio of the porous to bulk rock matrix α = 1 −
𝐶𝑟

𝐶𝑏
, Cr and Cb are the porous and bulk compressibility of the rock 

matrix (1/psi), respectively, and γ is the Poisson’s ratio. 

 

Radial Basis Function (RBF) 

RBF is a part of the artificial neural network (ANN) and simply 

a function class. RBF can be linear, nonlinear model, a single 

layer, or multilayers (Orr, 1996). RBF has number of neurons 

less than the number of input data. It may require more neurons 

than normal feedforward networks. However, RBF could be 

formed in a fraction of the time that takes to train normal 

feedforward backpropagation networks. In case of a lot of 

training variable, RBF work best (Chen, 1991).  

It is applicable for a huge amount of data. In RBF, the output 

parameter is most likely to the value of input parameter. RBF 

starts to set one neuron or more in the space of the input 

parameters. The neuron starts to compute the distances of the 

middle of the neuron and the middle of every neuron. The 

weight is approximated by Gaussian-based on the effect of 

every neuron. Multiplying the weight by the target value will 

predict the output (Alarfaj et al., 2012).  

According to Sherrod (2008) the idea of RBF is that the output 

parameter is very close to the other parameters that have the 

same input parameters. RBF place a minimum neuron of one in 

the space that is defined by the input data. This space has 

dimensions similar to the number of input parameters. The 

evaluated neuron computes the distance between the neuron’s 

center and every neuron’s center in that space. Every distance 

has an applied function to predict the weights base on the effect 

of every neuron.  

The closest neuron is the more effects it has on the output 

neuron. The estimated value is best predicted by multiplying the 

output value of the RBF function by the weight of the 

connection. The network of RBF has three layers: input, hidden 

and output. Hidden layer has the RBF function that is typically 

Gaussian function. A normalization of the input data is done by 

subtracting the median and dividing by the interquartile range. 

From the previous discussion, many models have been 

developed to estimate fracture pressure from various 

parameters. However, every one of these models has its own 

limitations. Consequently, using the artificial intelligence (AI) 

in the drilling is becoming more and more applicable because it 

can consider all the unknown parameters in building the model.  

Malallah & Nashawi (2005) used Feed-forward ANN to 

estimate the fracture gradient. 21,513 data points from 16 

different wells were utilized with three input parameters, which 

are rock density, depth and pore pressure. 97.5% of the data 

were used to train the model and 2.5% for testing. The fracture 

pressure was predicted with an error of 6.5% using 25 neurons 

of one network layer and sigmoid function as the transform 

function.  

Keshavarzi et al. (2011) used ANN to predict the fracture 

gradient. 130 data points of 3 input parameters, which are 

density of the rock, depth and formation pressure were utilized. 

The data was divided into three parts as follows 65% for 

training, the model was validated and tested using 20% and 

15% of the data, respectively. The correlation coefficient (R) 

between the predicted and actual fracture pressures for traing 

data is 0.9962, R = 0.9928 for validation and R = 0.9827 for 

testing were achieved by using a feed-forward with a back 

propagation neural network. 

Exact estimation of fracture pressure could save time, money 

and furthermore guarantee safe drilling operations. From the 

past studies, specialists utilized either well logs and/or 

formation strengths to estimate the fracture pressure. No 

previous model developed to estimate the fracture pressure 

utilizing the surface real-time drilling parameters that are easily 

available. The aim of this work is to apply RBF to estimate the 

fracture pressure by utilizing in excess of 3900 real field data 

based only on the surface real-time drilling parameters. Then, 

the RBF model will be compared with Pennebaker model, 

which is one of the mostly used models for prediction of the 

fracture pressure in the field. 

 

Data Description 

The data were collected from an onshore directional well. It has 

two bit sizes, which are 8.375 inches and 8.875 inches. Six 

lithologies were presented in the well with different formations, 

where five interbedded shales and sandstones at the bottom in 

addition to one carbonate layer at the top as shown in Table 1. 

A real time sensor was used to record the data every one foot. 

It is notable that there is a high vulnerability in the field data, 

especially in real-time surface drilling parameters. Therefore, 

the data is filtered out. Dangerous issues can be happened by 
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outlier’s in the estimation of fracture pressure, for example, the 

data which is irrational because of devices and human mistakes. 

Several trials were inspected to examine the impact of the 

collected parameters on the fracture pressure. These trials will 

help us in removing the unnecessary parameters to achieve 

efficient prediction of fracture pressure. In every trial, the 

influence of a solitary parameter on the fracture pressure 

estimation was detected while the alternate parameters were 

kept consistent. 
Table 1: Well Description 

 
In the prediction of fracture pressure, data set of 3925 points 

covering all the different formations under study were used.  In 

view of the literature, statistical analyses and trials, seven 

parameters were chosen as inputs to train the RBF model to 

estimate the output that is fracture pressure. These parameters 

are described in the methodology section. Table 2 presents the 

statistical analyses for the input data. The weigh on bit (WOB) 

is varying from 21.9 klb to 27.8 klb. The range of rotation per 

minutes (RPM) is in between 62 rpm and 90 rpm. The drilling 

torque (T) has a minimum reading of 9.240 klbf and a maximum 

reading of 10.240 klbf. The rate of penetration (ROP) is varying 

from 2.620 (ft/hr) to 8.070 (ft/hr). The density of the mud (mud 

weight) has a minimum MW = 102.920 (lb/ft3) and a maximum 

MW =110.680 (lb/ft3). The pore pressure (Pp) is in between 

64.290 (lb/ft3) and 79.930 (lb/ft3). 

 
Table 2: Statistical Analysis of the Input Data in Fracture Pressure Prediction. 

 
 

Methodology 

In fracture pressure prediction, dataset of 3925 points collected 

from all the formations under study is utilized to estimate the 

fracture pressure using the RBF. Different trials have been done 

to choose the preferable data distribution for the training and 

testing data sets. It was found that the distribution of 80% for 

training and 20% for testing is the best distribution. Eighty 

percent of the data (3140 data points) were used to train the 

radial basis function (RBF) model and then the remaining 

twenty percent of the data (785 data points) were used to test 

the RBF model. The selected input parameters are rotation per 

minute (RPM), weight on bit (WOB), rate of penetration 

(ROP), mud weight (MW), drilling torque (T), and pore 

pressure (Pp).  

Several radial basis function (RBF) trials were run to achieve 

the optimal selection of network function, spread and number 

of neurons. Three network functions were studied such as 

newrbe, newgrnn, and newrb. However, newrbe and newgrnn 

were not applicable in the prediction of fracture pressure and 

the processing speed was very slow. In newrb function, firstly 

the effect of neurons number on fracture pressure prediction has 

been studied at constant spread of 1 as shown in Table 3. It is 

clear that, 17 neurons have the highest R and lowest absolute 

average percentage error (AAPE). Then, the effect of the spread 

is studied at constant neuron’s number of 17 neurons as shown 

in Table 4. Based on the best accuracy in the prediction of the 

fracture pressure, spread of 0.5 gave the best results. So, the 

RBF model with newrb function, 17 neurons, and spread of 0.5 

was found to be the optimum model for fracture pressure 

prediction. 
Table 3: The Effect of Neurons Number in Newrb Network Function. 

 
 

Results and Discussion 

For the fracture pressure prediction, 80% of the data were used 

to train the RBF model which predicted the fracture pressure 

with very high R and low AAPE of 0.987 0.184%, respectively, 

as shown in Fig. 1a. Fig. 2a shows the correlation in term of 

correlation of determination (R2) between the estimated and the 

Parameter WOB(klbs) RPM(rpm) TORQUE(klb*f) ROPft/hr(ft/hr) MWIN(lb/ft3) Pore Pressure (lb/ft3)

Maximum 27.800 90.000 10.240 8.070 110.680 79.930

Minimum 21.900 62.000 9.240 2.620 102.920 64.290

Arithmetic Mean 25.776 81.622 9.686 4.304 109.060 71.030

Harmonic Mean 25.686 80.549 9.683 4.015 109.031 70.884

Mode 26.800 90.000 9.800 4.460 109.370 64.290

Range 5.900 28.000 1.000 5.450 7.760 15.640

Variation 2.218 83.183 0.035 1.503 3.114 10.387

Standard deviation 1.489 9.120 0.187 1.226 1.765 3.223

Skewness -0.707 -0.475 0.217 1.101 -2.509 0.120

Kurtosis 2.085 1.312 2.834 3.781 8.351 2.921

Coefficient of variation 0.058 0.112 0.019 0.285 0.016 0.045

Correlation Coefficient 0.159 0.185 0.214 0.832 0.132 0.832

# of Neurons R_Train AAPE_Train R_Test AAPE_Test

1 0.947 0.392 0.944 0.399

2 0.948 0.391 0.944 0.398

3 0.948 0.390 0.944 0.398

4 0.948 0.390 0.944 0.398

5 0.948 0.390 0.944 0.397

6 0.746 1.205 0.732 1.190

7 0.000 1.320 0.000 1.304

8 0.961 0.323 0.959 0.334

9 0.960 0.320 0.961 0.324

10 0.969 0.276 0.969 0.281

11 0.960 0.320 0.961 0.324

12 0.966 0.293 0.967 0.294

13 0.969 0.277 0.969 0.281

14 0.966 0.293 0.967 0.294

15 0.960 0.320 0.961 0.324

16 0.969 0.277 0.969 0.281

17 0.978 0.238 0.976 0.250

18 0.961 0.324 0.959 0.335

19 0.960 0.320 0.961 0.324

20 0.960 0.320 0.961 0.324

21 0.960 0.320 0.961 0.324

22 0.983 0.207 0.982 0.213

23 0.986 0.186 0.986 0.192

24 0.985 0.196 0.984 0.206

25 0.988 0.173 0.987 0.183
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real fracture pressure points where R2 is 0.974. 

20% of the data was used to testing the RBF model. RBF model 

predicted the unseen fracture pressure values at high accuracy 

(R = 0.989 and AAPE = 0.175%) as shown in Fig. 1b. Fig. 2b 

shows the correlation in term of (R2) between the estimated and 

the real fracture pressure points where R2 is 0.978. 

 
Table 4: The Influence of Spread in Newrb Network Function. 

 

 
Fig. 1: Radial Basis Function (RBF) Model in the Estimation of Fracture Pressure for 

Training (a) and Testing (b) Data. 

 

 
Fig. 2: Radial Basis Function (RBF) Fracture Pressure VS. Real Fracture Pressure for 

Training (a) and Testing (b) Data. 

 

For more confirmation of the power of the new RBF model, it 

was applied to estimate the fracture pressure and compared it 

with Pennebaker model that is one of the mostly used models 

for prediction of the fracture pressure in the oil field. By 

applying the RBF model for the fracture pressure prediction, a 

high accuracy (R = 0.987, AAPE = 0.182% and R2 = 0.975) 

were achieved as shown in Fig. 3a and Fig. 4a.  

For Penebaker model, matrix stress coefficient was computed 

from the chart of Penebaker for all the depths. Also, the 

overburden stress was calculated at every depth. Then, matrix 

stress coefficient and overburden stress were substituted in 

Penebaker equation to predict the fracture pressure. Penebaker 

model predicted the fracture pressure with low accuracy as 

indicated by R and the high AAPE of 0.921 and 9.483%, 

respectively as shown in Fig. 3b. Comparing the predicted 

values of fracture pressure vs. the actual ones, R2 was 0.849 as 

shown in Fig. 4b. 

 

 
Fig. 3: The New Radial Basis Function (RBF) Model (a) in Comparison with Penebaker 

Model (b) for Fracture Pressure Prediction. 

 

 
Fig. 4: Comparing the Predicted Fracture Pressure Values and the Actual Values for the 

New Radial Basis Function (RBF) Model (a) and the Penebaker Model (b).  

Spread R_Train AAPE_Train R_Test AAPE_Test

0.1 0.0000 1.3203 0.0000 1.3040

0.4 0.9361 0.4088 0.9289 0.4326

0.5 0.9833 0.2068 0.9821 0.2193

0.6 0.9820 0.2130 0.9806 0.2250

0.75 0.9692 0.2772 0.9688 0.2813

1 0.9779 0.2381 0.9760 0.2503

1.5 0.9819 0.2154 0.9809 0.2237

5 0.7051 0.9053 0.6890 0.9151

9 0.4164 1.1902 0.3737 1.2052

10 0.7802 0.9409 0.7528 0.9679
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Conclusions 

Radial basis function (RBF) was utilized to estimate the fracture 

pressure using more than 3900 real field data points of five real 

drilling surface parameters (WOB, RPM, ROP, T and MW). 

The following points can be concluded from the obtained 

results: 
 The RBF-based model outperformed an available 

empirical model (Penebaker model) in predicting the 

formation fracture pressure. RBF model has the ability to 

predict fracture pressure with an excellent precision (R = 

0.987, AAPE = 0.182% and R2 = 0.975) whereas 

Penebaker model predicts the fracture pressure with 

accuracy of (R = 0.921, AAPE = 9.483% and R2 = 0.849). 

 RBF-based model has also the advantage of the simple 

prediction of fracture pressure that is shown from its ability 

to predict fracture pressure from only the real-time surface 

drilling parameters, which are easily available. 

 Formation properties are also major parameters that need 

to be considered to predict fracture pressure. However, the 

effect of formation properties was included indirectly by 

incorporating the real-time drilling surface parameters such 

as ROP and torque.  

 

Nomenclature 

ROP  = Rate of penetration 

WOB  = Weight on bit 

RPM  = Rotary speed 

T  = Drilling torque 

MW  = Mud weigh 

R  = Correlation coefficient 

AAPE  = Absolute average percentage error 

R2  = Coefficient of determination 

AI  = Artificial intelligence 

RBF  = Radial basis function 
𝐹

𝐷
  = Fracture pressure gradient  

𝑃

𝐷
  = Pore pressure gradient  

𝑆

𝐷
  = Overburden pressure gradient  

Kp  = Pennebaker matrix stress coefficient 

Pp  = Pore pressure 
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