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Abstract 

Drilling optimization technicians strive to increase the 

efficiency of the drilling operation; however, unforeseen 

events can occur that negatively impact this efficiency. While 

drilling a well, it is critical to maintain a vigilant watch for 

various events that could require intervention. Negative results 

from undetected events include an increase in non-productive 

time (NPT), loss of valuable fluids, wellbore collapse, or even 

loss of well control. Each event has its own indicative 

multidimensional measurement profile. An expert technician 

monitors various sensors for these profiles to identify events 

and take corrective actions before drilling is negatively 

affected. This process requires focus and a breadth of drilling 

knowledge. Although these expert technicians are valuable, 

they are often limited in the number of wells they can 

effectively monitor simultaneously. An algorithm to automate 

this process has been developed to address this and thereby 

increase efficiency. 

A survey of representative profiles from expert technicians 

was used to develop rules for these events. Using a 

combination of custom simulations and advanced statistics, 

the algorithm can detect current drilling conditions in real time 

and determine whether or not an event is likely to occur or is 

currently occurring. The algorithm gives a score to indicate 

the severity status of the event to the technician. This method 

of early event detection can reduce risk and NPT during 

drilling operations. Using these early detection systems 

enables real-time fluid engineers to efficiently monitor many 

more drilling operations than was previously possible. 

 
Introduction  

While drilling, it is important to monitor for negative 

events that threaten the well, such as pack off, bit balling, and 

poor hole cleaning. Failure to monitor these events can lead to 

prolonged down time or even to loss of the well.1-4 Sensors 

and manual tests are used to measure characteristics of the 

well and drilling fluid. Originally, various personnel 

monitored individual measurements for anomalies. However, 

because the information that they received was segregated by 

their specific job roles, their effectiveness and efficiency was 

limited.5  

An applied fluids optimization (AFO) monitoring service 

has been developed to improve this shortcoming. This service 

provides AFO engineers who are trained to monitor and 

interpret data from various disciplines. They receive the data 

from sensors and manual tests, as well as from a drilling fluids 

modelling software program that can predict well 

characteristics.6 For example, the program can model the 

expected standpipe pressure (SPP), fracture gradient, 

equivalent circulating density (ECD), and other well and fluid 

properties. AFO engineers also use workflows that provide 

guidelines to identify and manage events. These workflows 

were developed over years of drilling experience. For 

example, insufficient hole cleaning risk can be identified if the 

annular velocity, which is a function of hole size and pump 

rate, drops too low. Sag can be identified by an unexpected 

change in density.  

The AFO engineer will monitor the sensors and manual 

test results from the rig or in a real-time operations center 

(RTOC) for any indication of an event. If the tools detect 

something questionable, the engineer will communicate with 

the rig in an intervention process. The system described in this 

paper has three types of interventions, which are color-coded 

to indicate priority. Green indicates the lowest-level priority, 

which is an information-only communication. A yellow 

intervention indicates a warning. A red intervention is a top-

level intervention indicating the need for an immediate action. 

Monitoring the signals involves watching multiple graphs 

that contain multiple plots for any sign of the outlined event 

indicators in the workflows. Although this work can be 

difficult and inefficient, a new algorithm has been developed 

to automatically notify the AFO engineer of any anomalies 

that may require intervention. 

 
Process 

The new algorithm can detect well abnormalities and 

provide automatic notifications to the AFO engineer. The 

AFO engineer can select a well characteristic to monitor, such 

as SPP, then perform a function on the parameter. For 

example, the engineer may be interested in monitoring SPP, 

and want to see the difference between the measured SPP and 

the value predicted by the drilling fluids modeling software. 

This system can monitor the difference between the actual and 

theoretical values. Other functions include the first derivative, 

integral of the signal, and pattern matching. It can also 

compare the signal to a preset value. The algorithm can also 
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filter the data based on other parameters. For example, the 

AFO engineer may only care if the pressure is high when the 

flow is stable. In this case, the signal will be ignored if the 

flow is changing. The software can also smooth the data, using 

smoothing operations that include removing cyclical noise, 

averaging, and Hampel filter. The algorithm learns what 

normal behavior is for the output of the function. It calculates 

a score value to quantify how far from normal the signal is. If 

the score exceeds a user-defined value, the AFO engineer is 

notified. The engineer can then open the graphs and decide 

whether or not an intervention is needed. 

The AFO engineer can also combine multiple scores, 

which enables monitoring for specific events. For example, 

the AFO engineer can monitor the difference between SPP and 

predicted SPP values and combine this function with erratic 

torque and decreased flow to monitor pack off. This method 

enables the algorithm to be used to automate the identification 

of events that are outlined in the workflows. 

 
Examples 

The first example of this algorithm is the detection of a 

greater difference between actual and predicted SPP values 

from the drilling fluids modeling software. An artificial 

increase in SPP is added in to show the score’s reaction. 

Monitoring this difference can determine when the pressure is 

acting unpredictably, which is usually attributable to some 

unforeseen situation. Figure 1 shows actual pressure in blue 

and the predicted pressure in red. The sudden increase in 

actual pressure was added to the data to display the reaction in 

the score. The calculated score is shown in yellow. The two 

spikes in the score correspond to the sudden increase in actual 

SPP with no change in predicted SPP. Because this difference 

lasts long enough, the score returns to a low level as the 

algorithm becomes accustomed to what may be a new normal 

difference. The engineer has been alerted to the change and 

can take appropriate action if necessary. The time needed for 

the algorithm to settle into a new normal will depend on the 

amount of previous data the algorithm uses to calculate 

normal. It is worth noting that the measured and predicted SPP 

values have an offset during normal operations. This offset 

can be attributable to many factors, including incorrect or 

outdated parameters entered into the drilling fluids modeling 

software. The algorithm learns that this offset is a normal 

occurrence, and the score remains low. In this case, when that 

offset becomes larger or smaller, the score spikes. The 

engineer will be notified in either case. 

 

 
Figure 1. Actual vs. predicted pressure shown in blue and red, 
respectively. The score is a measurement of change in the 
difference between actual and predicted pressure. 

 

The next example explores erratic torque. Erratic torque 

can be a symptom of many different issues, but discovering it 

visually is difficult. Figure 2 shows measured torque data with 

a short offset added. The blue line in Figure 2 indicates the 

measured torque, and the orange line indicates the score. 

Figure 3 shows the calculated erratic measurement. Although 

there are multiple ways to measure erratic behavior, it is 

measured by using variance in this example. As shown in 

Figure 2, the sudden offset in the torque value does not 

correspond to a spike in the score. This is because the score is 

based on an increase in erratic behavior, rather than in the 

actual torque value. However, a spike occurs at approximately 

16:30, which corresponds to an increase in erratic behavior 

shown in Figure 3. 

 

 
Figure 2. Torque (blue) and score (orange). The score is based on 
the erratic behavior of the torque. 
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Figure 3. Measure of erraticism from the torque shown in Figure 
2. The erratic behavior increases at approximately 16:30. 

 

Figure 4 shows measured density data with an artificial 

increase and decrease added to the signal. The blue line 

indicates the actual density measurements. The red line shows 

the predicted value, and the yellow line indicates the 

calculated score. An artificial increase, then decrease, in 

density is added to the data to show the reaction of the score. 

In this example, the score is calculated using the difference 

between the actual and predicted density values above a preset 

value. In this case, the preset value is 0.5 lb/gal. As shown in 

the figure, when the difference reaches a sufficiently high 

value, the score spikes and remains high until the density 

difference decreases again. Unlike the pressure difference 

shown in Figure 1, the score remains high and does not settle. 

 

 
Figure 4. Actual vs. predicted density shown in blue and orange, 
respectively. The score, shown in yellow, is calculated using the 
difference between the actual and predicted densities with 
respect to a set limit of 0.5 lb/gal. 

 

Figure 5 shows the score calculation based on a decrease 

in annular velocity. This is measured data with an artificial 

decrease in the value to show the score reaction. In this case, 

the score is calculated by how far below the preset value the 

signal is. The preset value is set to 145 ft/min. The decrease in 

annular velocity corresponds with a spike in score. Note that 

the increases in annular velocity do not cause a change in the 

score. 

 

 
Figure 5. Annular velocity (blue) and corresponding score 
(orange). The score is based on the how far below a preset value, 
145 ft/min, the annular velocity drops. 

 

In Figure 6, the score is based on the slope of the ECD 

signal. This is a measured ECD value without modifications. 

Figure 7 shows the calculated slope of ECD.. There are two 

spikes in the score. The first is larger than the second, despite 

the higher ECD value. The spikes in the score correspond to 

the higher slope values shown in Figure 7. 

 

 
Figure 6. ECD (blue) and the corresponding score (orange). The 
score is based on the rate of change of the ECD signal. The graph 
of the slope of ECD vs. time is shown in Figure 7. 
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Figure 7. Slope of the ECD signal shown in Figure 6. The two 
spikes shown in Figure 6 correspond to the two sudden increases 
shown here. 

 

Figure 8 shows multiple scores that can be combined using 

a weighted average to identify specific conditions as shown in 

Figure 9. These scores are calculated from actual data. 

According to the documentation associated with this data, the 

AFO engineer triggered an intervention at 10:30. The 

algorithm would have alerted the engineer to the same 

conditions. 

 

 
Figure 8. This graph shows the many scores that can be 
accumulated to identify a specific event. 

 

 
Figure 9. Average scores combined. The spikes in the score 
correspond to interventions from the AFO engineer.  

When running this algorithm with documented 

interventions, the software identified all interventions. It is not 

possible to calculate how many false positives occurred 

because many different unknown actions could have resulted 

in the unusual signals. For example, the engineer may have 

noticed the unusual signals, communicated with the well 

personnel, and learned they were doing something that was 

normal. In another example, the high score may have occurred 

after another intervention, which could have been caused by 

fixing the previous intervention. It is also difficult to identify the 

time at which the engineer intervened because their reports can 

be an approximation of the time that they noticed the issue. 

 
Conclusions 

The use of this algorithm enables AFO engineers to be 

alerted to any unusual signals. This functionality makes it 

possible for them to monitor multiples well at a time and to 

quantify the severity in real time. Because the operations and 

signals that are being monitored can be selected by the 

engineer, the algorithm can be customized to address the 

specific needs of a well. 
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Nomenclature 
 AFO = applied fluids optimization 

 ECD = equivalent circulating density 

 RTOC = real-time operations center 

 SPP = standpipe pressure 
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