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Abstract 

Drilling optimization can reduce drilling costs but is 

challenging due to the number of operational parameters and 

the large search space of the combined variables. The approach 

presented herein, applies a swarm algorithm to a rate of 

penetration (ROP) model with the goal to decrease overall 

drilling cost. Drilling optimization becomes more complicated 

when considering the potential use of multiple bits. An 

advanced search algorithm can help assist by searching the 

infinite search space of control variables and narrowing on the 

global optimum point. The optimized variables include depth 

based operational parameters, weight on bit (WOB), rotary 

speed (RPM), best bit combination, and optimal bit pull depth. 

The validity of the optimization algorithm shows great promise 

as it did when applying it to a previously drilled offshore 12.25” 

hole section, and the approach can be generalized and applied 

to any drilling operation or location. An offshore 12.25” hole 

section was analyzed using the proposed approach. The 12.25” 

hole sections had previously been drilled with two bits with an 

overall 127.8 $/ft. Different optimization criteria were tested 

and integrated to obtain the potential lowest cost. The resultant 

lowest $/ft. simulation used two drill bits with an optimized pull 

depth and operating variables resulting in 78.1 $/ft. for the 

section, a reduction of 39 percent from the offset.  

 
Introduction 

Models are established in almost all fields in science to help 

scientists come up with efficient designs and to reduce overall 

costs. In the drilling domain, the rate of penetration (ROP) 

models are used to find out how the different parameters such 

as weight on bit (WOB), revolution per minutes (RPM), bit 

designs and hydraulics effect the ROP. In drilling, there are 

several models which are used to calcuate the drilling rate of 

penetration (ROP) based on numerous variables.  

Cunningham in 1960, showed that the roller cone bit ROP 

is a function of WOB and RPM (Cunningham, 1978). His 

model suffers from some shortcomings such as ignoring the 

effects of hydraulics, bit design and formation properties. In 

1962, Maurer suggested a model and incorporated the effect of 

rock strength into the ROP. The Maurer model was developed 

for ideal hydraulics which assume perfect hole cleaning 

(Maurer, 1962). Later in 1974, Bourgoyne and Young 

developed a model for roller cones bits (Bourgoyne et al, 1974). 

They incorporated not only the effect of operational parameters 

such WOB, RPM but the hydraulic, bit geometry and formation 

properties such as rock strength.  

Today utilizing Polycrystalline Diamond Compact (PDC) 

bits in drilling industry is common due to the fact the PDC 

enhance the performance through faster ROP and longer bit life. 

In addtion, they are stable in both vertical and horizontal wells, 

and they can withstand high pressure, temperature, hardness, 

and toughness. In 2014, Kerkar et al., developed a model to 

estimate the ROP of PDC bits. This model is one of the most 

accurate and comprehensive models for estimating ROP of 

PDC bits. The model utilizes key parameters, such as 

operational parameters, hydraulic, bit design, formation rock 

strength and abrasiveness to estimate the ROP. The model is 

provided in the Eq. 1 – 6. Analyzing these equations, it can be 

seen that some parameters have integrated effects on drilling 

ROP, such as WOB and RPM in Eq. 1 and Eq. 6. In addition, 

like most real models, this equation is non-linear, 

multidimensional, and complex constraints are applied to the 

feasible solutions, which make it difficult to solve using 

analytical methods. Metaheuristic algorithms were developed 

to help find the optimum solution of such complex equations. 

In this study, the PSO agorithm was applied to the ROP model 

with the overall goal to reduce the cost of drilling by finding the 

optimum parameters for WOB, RPM, bit arrangments, and pull 

depths. 
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PSO Algorithm 

Particle swarm optimization (PSO) is a stochastic method 

developed by Eberhart and Kennedy in 1995, and was designed 

to mimic the behavior of animals, bird flock, fish school, in 

nature (Eberhart and Kennedy, 1995). This algorithm creates a 

population of solutions and it tries to improve those iteratively 

using simple mathematical equations. In this algorithm, each 

solution, which are considered particles, iteratively update the 

position by adding an updated velocity term to the particles 

previous position, as seen in Eq. 7. The velocity value for each 

particle is then updated using inertial, cognitive and social 

components and the new velocity is used to update the position 

using Eq. 8. The inertial component (𝜔) helps each particle stay 

in the problem boundary by applying a degree of continuity to 

the solutions (Atashnezhad et al, 2014). The cognitive 

component (𝜑1) determines the degree of force that is applied 

to each particle to move to its best previous position, while the 

social component (𝜑2) determines the degree of force that is 

applied to each particle and moves to the best global particle. 

The best particle in the new generation replaces the best global 

particle if it is evaluated at a higher fitness value.  
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There are several ways that the particles share their 

information with the neighbors in the PSO algorithm, which are 

referred as topology. Four common topologies are: single-

sighted, ring, fully connected and isolated. In the single-sighted, 

each particle shares the information with the next best. In the 

ring topology, each particle shares the information with the left 

and right particles. In the fully connected topology, the particles 

share all information with each other, while the isolated 

topology, everyone is compared to a predetermined group. The 

topology definition helps the algorithm find the optimum 

answer efficiently and helps the algorithm avoid getting caught 

in a local minimum. In this study, the PSO algorithm used the 

fully connected topology. The four common topologies are 

provided in the Figure 1. 

 
 

Figure 1: Four common topologies for PSO algorithm 

 
Results 

To prove the validity of the algorithm, field case data was 

taken from a 12.25” well drilled in the North Sea (Gjelstad et 

al., 1998, Bratli et al., 1997).    The research herein, optimizes 

the first two PDC bit runs, 9379 ft. – 13832 ft.  Before 

optimizing, the rock strength was converted to confined 

compressive strength (CCS) and then discretized to be input 

into the algorithm. Figure 1 below shows both the actual rock 

strength data, along with the discretized rock strength overlay 

 

 
Figure 2: Rock Strength from 12.25” well in North Sea  

 

The two bits used during this section of the well are detailed 

below in Table 1. 
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 Bit A Bit B 

Bit Type  PDC  PDC  

Bit Diameter  12.25 in.  12.25 in.  

Depth In  9379  11814  

Depth Out  11814  13832  

Wear In  0  0  

Wear Out  4.4  1.4  

Cost  $48,062  $57,876  

Number of Cutter  69  107  

Back Rake  20°  20°  

Side Rake  15°  0°  

Number of Blades  6  6  

Junk Slot Area  28 in2  28 in2  

Table 1: Bit Description from 12.25” well 

 

Both bits A and B were input into the algorithm, to allow the 

program to choose the optimal bit combination between the two 

available bits. The two bits were correlated to drilling data for 

their respective sections, resulting in both Bit A and Bit B 

having different Wc and K values for the algorithm to weigh the 

cost vs. performance. 

For any optimization routine, there needs to be a clear 

objective function (OF) to optimize upon. The OF for this 

optimization routine was to minimize the equation set shown 

below in Eq. 9 – 11 
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The above set of equations is used for one bit; therefore, 

these calculations were performed twice and totaled to get the 

overall cost. The tripping rate estimation, 𝑡𝑇𝑟𝑖𝑝𝑝𝑖𝑛𝑔
′ , used was 

0.75 hr. / 1000 ft., and the cost of the rig rate is assumed to be 

$100,000 per day.  D1 is the start depth for the bit, and D2 is the 

depth when the bit is pulled.   

For this optimization algorithm, there was a maximum 

allowable ROP set to 350 ft./hr. Theoretically, the well could 

be drilled with much higher ROP values, however, this 

constraint was implemented to ensure realistic results, due to 

practical limitations. 

 

WOB, RPM, Pull Depth, and Bit Selection 
Optimization 

Below show the optimum results for WOB and RPM found 

from the algorithm, along with the resultant ROP, Figures 3 – 

5.  The two different bits the algorithm selected are shown with 

the different textures.  

 

 
Figure 3: Optimal WOB for 12.25” well 

 

 

 
Figure 4: Optimal RPM for 12.25” well 

 

 
Figure 5: Optimal ROP for 12.25” well 
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In addition to the simulation shown above, there were two 

more optimization scenarios performed for comparison 

purposes. The first was optimizing only the operational 

parameters WOB and RPM.  The depth to change out bits was 

held constant, along with the bit combinations and final bit wear 

for both bits were all kept the same as performed in the field.  

The second scenario was optimizing WOB, RPM, and the 

optimal depth to change bits.  The bit combination was chosen 

to be the same as performed in the field.   

Below, Figure 6, shows the overall cost and ROP for each 

optimization scenario.  

 
Figure 6: ROP and Cost comparison for different optimization 

scenarios 

 
Discussions 

Before optimization, the actual cost of drilling was 

$569,093, or 127.8 $/ft., which resulted in an overall average 

ROP of 51.55 ft./hr.  This was the result of using Bit A from 

9379 ft. until 11814 ft., then using Bit B from 11814 ft. to 13832 

ft.  Optimizing only WOB and RPM, the overall cost of drilling 

the well was $550,836, or 123.7 $/ft., with an average ROP of 

62.17 ft./hr.  This optimization resulted in a slight decrease in 

cost, however, the algorithm was restricted to optimizing only 

on operational parameters. When optimizing on WOB, RPM, 

and depth to change the bits, the cost was reduced to $359,802, 

or 80.8 $/ft., with an average ROP of 77.51 ft./hr.  For this 

scenario, the algorithm selected to use Bit A once, and for this 

single bit to drill the entire interval. This optimization did not 

result in a big increase in performance in terms of ROP, only an 

increase of 26 ft./hr., but the cost was reduced significantly.  

This result is due to the cost of only using one bit, along with 

eliminating the cost of tripping out to change the bit.  Finally, 

for the complete optimization scenario of the drilled section, 

WOB, RPM, bit combination and depth to change bits, the cost 

of the well reduced to $347,779, or 78.1 $/ft., which results in 

an overall average ROP of 174.11 ft./hr. For the full 

optimization, the algorithm selected to use Bit A twice and not 

use Bit B in either section. The chosen pull depth for this 

scenario was 11600 ft., resulting in a significant increase in 

performance and significant reduction in cost. Analyzing the 

results from all the optimizations in Figure 6, the algorithm 

shows a decrease in overall cost per foot with an increase in 

allowable optimized parameters. Extending this further, it 

would be conceivable that the cost would continue to decrease 

with the incorporation of more parameters for optimization. 

This would continue until the cost can no longer be decreased 

and eventually level out to the lowest possible drilling cost. 

 
Conclusions and Future Work 

Applying this algorithm to a field case drilling scenario 

proves the validity of the algorithm and the potential for future 

use.  Additionally, the results are very encouraging due to the 

continuous decrease in cost with the increase in allowable 

optimized parameters.   

There is some future work to be done for this algorithm to 

make it more functional. Some of this work will include 

applying both PDC and roller cone ROP models, incorporating 

drill string torque and drag analysis to integrate the results to 

obtain downhole parameters from surface measurements, and 

allow the algorithm to generically create bit designs. 

 

Nomencluture 
𝑎1, 𝑎2,𝑎3, 𝑎4,,: Empirical Coefficient  

ABR: Relative Abrasiveness  

𝑏1, 𝑏2,𝑏3, 𝑏4,,:: Empirical Coefficient  

c1, c2: Empirical Coefficient  

ΔD: Depth Step Size 

ROP: Rate of Penetration 

WOB: Weight on Bit 

RPM: Revolution per Minute of the Bit 

BR: Back Rake 

SR: Side Rake 

CCS: Confined Compressive Strength 

𝑊𝑓: Wear function 

h(x): Hydraulic efficiency function 

b(x): function for the effect of Number of Blades 

𝐷𝑏𝑖𝑡: Bit Diameter  

HSI: Horsepower per Square Inch  

JSA: Junk Slot Area  

K1: Calibrated Constant  

𝑁𝑏: Number of Blades  

Pbit: Bit Pressure Loss  

Q: Flowrate  

Wc: Wear Coefficient  

V: Velocity of each Particle  

𝜑1: Cognitive component 

𝜑2: Social component 

ω: Weighted Inertia Constant  

r1, r2: Random value from 0 to 1  

𝑝𝑖: Previous Best for each Particle  

𝑝𝑗: Global Previous Best for each Particle  

x: Position of the Particle  

i: vector index 

k: iteration number 
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