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Abstract 

Fluid invasion into formations while drilling is a common 
issue and is often sought to be minimized in order to reduce the 
possibility of weakening the borehole or potentially plugging the 
production zone.  In other cases, fluid invasion is desired as we 
seek to place lost circulation material, perform wellbore 
strengthening, or control flow through a frac pack.  Often 
assumed to be a simple shear flow as through a bundle of various 
sized tubes, flow in porous media is in reality tortuous, through 
converging and diverging channels which induce mixed shear 
and extensional flows on the fluid.  The behavior of fluids under 
extension is very different from shear flow and at the same time 
less well understood.  Extensional properties are traditionally 
hard to measure; however, one relatively simple method to 
simulate to behavior of a fluid in extensional flow is through 
applying an exponentially increasing shear. 

Using a laboratory rheometer, the shear rate applied to a 
sample will be increased exponentially, creating strong flows 
comparable to those experienced in flow through porous media.  
Correlation between the rheological properties of the fluid under 
exponential flow to the formation damage potential of the fluid 
will be made. 

 
Introduction  

Improper polymer selection has been shown to cause 
significant formation damage in some situations1,2. Polymers 
can exhibit high rock retention and impede the flow of 
hydrocarbon from the formation due to blockages. 
Biopolymers are generally removed through acidization, 
breaking down the polymer backbone. Polymers can also be 
extruded into the pore spaces leading to a high increase in 
extensional viscosity. This increase in extensional viscosity 
can lead to an increase in formation damage by making it 
more difficult to remove the polymers from the pore spaces3,4. 
This damage can be minimized by the proper selection of 
polymers with good viscosification / suspension properties but 
with low extensional viscosities. This can be controlled by the 
architecture of the polymer chosen for the fluid, where 
branched polymers show greatly reduced formation damage 
and linear polymers show an increase in damage. 

There were two types of fluids examined: brine/polymer 
mixtures and full formulation drill-in fluids. Brine / polymer 
solutions allowed the effect of polymer on the formation to be 
isolated, while using the full drill-in fluid formulation allowed 
an investigation into whether other components (i.e. bridging 

particles, fluid loss control polymers) had an effect on the 
formation damage and the extensional viscosity.  An 
exponentially increasing shear flow was used as an 
approximation of extensional measurements, connecting the 
behavior of the flow in the porous formation to the potential 
for formation damage. 
 
Extensional Flows and Exponential Shear 

The rheological properties of fluids are often controlled by 
certain polymer characteristics including molecular weight, 
concentration, charge density and chain conformation5,6. The 
effect of these properties on the shear flow viscosity and the 
viscoelastic properties (storage and loss moduli) has been 
investigated for several decades. The effect of these properties 
on the extensional viscosity has been less well documented, 
especially in regard to water soluble polymers such as those 
used in wellbore construction.  Exponential shear has been 
previously well-described in literature as a means of 
producing a “strong flow” in simulation of extension7.  While 
several papers have demonstrated that chain extension in 
exponential shear is not as large as in planar extension for 
certain polymers melts (due to the mixed stretching and 
rotational of polymer chains in a rotational test)8,9, little work 
has been done on dilute polymer solutions.  In addition, the 
mix of elongation and shear experienced in the exponentially 
increasing flow mimics the same flows experienced in 
converging and diverging flows within porous media.   

Exponential shear producing ideal strong flows would 
follow the form: 

ሻݐሺߛ  ൌ ఈ௧݁ܣ െ
ଵ

஺
݁ିఈ௧ (1) 

However, for simplicity, Equation 1 is reduced with minimal 
error to 

ሻݐሺߛ  ൌ ሺ݁ఈ௧ܣ െ 1ሻ (2) 

and thus the shear rate also increases exponentially over time, 
as  

 γሶ ሺtሻ ൌ αAe஑୲ (3) 

In these equations, the parameter A is the “strain scale factor” 
and α is the “exponential rate constant”.  For a series of 
constant α, increasing A will result in increasing the maximum 
strain experienced.  If A is held constant, increasing α will 
increase the acceleration of the shear rate through the test.  
Evaluation of the brine / polymer solutions at high strains and 
high acceleration for evidence of strain hardening or softening 
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of the polymers will reveal how the polymer chains stretch 
and fold in porous flows.  This connection of polymer 
behavior in porous flows with both the chemistry of the brine / 
polymer fluid and the potential for formation damage will 
allow for both better prediction of damage and better design of 
fluids for contact with the reservoir. 

Several choices for material functions have been proposed 
in literature: the two focused on here are listed below. 

1) Exponential Shear Stress Coefficient: This is the 
instantaneous stress scaled by the instantaneous shear 
rate in an exponential shear flow.  More simply, this 
can be thought of as the “exponential viscosity”. 

 ηୣሺtሻ ൌ
஢౛ሺ஑,୲ሻ

ஓሺ୲ሻሶ
 (4) 

2) Principal Exponential Stress Growth Coefficient: 
This function combines the shear and normal stresses.  
It can be thought of as the “principal exponential 
viscosity”, or the viscosity along the first principal 
stress vector (which is not necessarily the direction of 
applied shear).  

 ηଵ
ୣሺtሻ ൌ

ට୒భ
౛ሺ୲ሻమାସ஢౛ሺ୲ሻమ

ଶஓሺ୲ሻሶ
 (5) 

For a Newtonian fluid, these material functions are identical 
and rise monotonically, approaching a limiting value at long 
times.  For viscoelastic fluids, the exponential viscosity has 
been thought to rise to a maximum and then decreases with 
time10.  However, in practice, the effects of chain stretching 
and stain hardening at high values of α may cause the 
exponential viscosity to no longer decrease and plateau at long 
times.  In addition, the behavior of the principal exponential 
viscosity, which for a simple viscoelastic fluid decreases 
monotonically over time, can exhibit non-monotonic behavior 
at long times when accelerated at higher values of α. 
 
Flows in Porous Media 

Because we are attempting to tie the rheological behavior 
of a fluid to its behavior when flowing in porous media, it is of 
interest to understand the conditions of shear in the pore.  A 
standard assumption for diverging and converging flows such 
as experienced in porous media is that the shear rate in the 
pore is identical to the extensional rate experienced by the 
fluid.  In order to estimate the shear rate, the Kozney-Carman 
model was used.  In this model the flow is viewed as through a 
bundle of tortuous tubes of various sizes, with the tortuosity 
applied to both the effective length of the tubes and to the 
average velocity in the tube.  Equation 6 gives the Kozney-
Carman relation for velocity in the pore, based on fluid 
rheology and the assumed tortuosity and shape of the 
pores11,12.  The shear stress at the wall can then be calculated 
from Equation 7 with the pressure drop, tortuosity, and the 
hydraulic radius of an average pore (based on permeability, 
porosity, shape, and tortuosity in Equation 8). 
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With this set of equations fluid velocity in the pore can be 
calculated.  The average shear rate in the pore can be 
calculated by  

 γሶ ൌ fሺσሻ ൌ
୩బሺଵାஞ୬∗ሻ

ሺଵାஞሻதేి୬∗
ቀ
〈୳〉ି୳ഥ౭
୰ౄ

ቁ (9) 

where n* is a correction for non-linearity in the stress function 
and is defined as 

 n∗ ൌ
ୢ ୪୬஢ഥ౭

ୢ ୪୬൤
మሺ〈౫〉ష౫ഥ౭ሻ

౨ౄ
൨
 (10) 

Thus, if the permeability and porosity of the formation are 
known, along with basic fluid behavior defined by a 
rheological model, then the shear rate can be calculated as a 
function of pressure drop over a length of formation.  These 
shear rates can then be compared to results from exponential 
shear tests to evaluate the effects on polymers in flow in 
porous media. 

Fluids to be tested will generally fall under one of two 
rheological regimes – pseudoplastic or viscoplastic – requiring 
very different rheological models for use in conjunction with 
the Kozney-Carman model.  Viscoplastic fluids will exhibit 
yielding behavior along with some degree of shear thinning.  
Pseudoplastic, or shear thinning, fluids will not exhibit a yield 
stress, but may have different features.  For pseudoplastic 
fluids with an observable lower-Newtonian region, flow in 
pores will be modeled with a combination of the Kozney-
Carman model with the Ellis model describing the rheology 
(chosen because it works well with the given system of 
equations).  The Ellis model is a three-parameter model which 
well-describes the shear characteristics of these fluids, with 
the model given by: 
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where η0 is the zero-shear viscosity in the lower-Newtonian 
region, αE is a shear-thinning index, and σ2 is roughly 
identified as the shear stress value at which η has fallen to half 
its final asymptotic value.  By combining the Ellis model with 
the Kozney-Carman model for flow in porous media, Equation 
6 becomes: 
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Thus, the shear rate can be determined as 

 γሶ ൌ
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൨ (13) 

In the case of a viscoplastic fluid which exhibits a yield 
stress, two models are available for use – the Bingham plastic 
and Casson models.  More focus is given to the Cason model, 
which is similar to the Bingham plastic model except that the 
parameters, the stress, and the shear rate are raised to the 
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power of ½.  This gives the model more flexibility to better fit 
empirical data for fluids exhibiting both shear-thinning and 
yielding characteristics. 

 σଵ ଶ⁄ ൌ σ଴
ଵ ଶ⁄ ൅ ηଵ

ଵ ଶ⁄ γሶ ଵ ଶ⁄  (14) 

In this case, Equations 6 and 9 becomes: 
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At relatively high shear rates in this model, n* approaches 1; 
however, at stresses near the yield stress the model actually 
predicts decreasing shear rate with increasing shear stress.  
The stress inflection point for Equation 16 is found to be 
dependent only on the yield stress, σ0, and the assumed 
geometry of the pores (KC, k0, and ξ).  For the Kozney-
Carman parameters, the stress inflection point is at 1.85σ0. 

In addition to the interest in the shear rate (and thus 
extensional rate) in the pores, it is also of interest to determine 
Reynolds number for flow in the pore, to evaluate the flow 
regime in the pore.  The Reynolds number for a porous bed is 
given by [Kazicki and Tiu 1988] 

 Re୔
∗ ൌ

ୈౌமሺ〈୳〉ି୳ഥ౭ሻ஡

஗ీሺଵିமሻ
 (17) 

where DP is the bed particle diameter, ρ is the fluid density, 
and ηD is the Darcy viscosity for non-Newtonian flows in 
porous media, given by 

 
〈୳〉ି୳ഥ౭
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The bed particle diameter is related to the hydraulic radius and 
the bed column diameter, DC, by the following 

 rୌ ൌ
மୈౌ

଺ሺଵିமሻାସቀୈౌ ୈి
ൗ ቁ

 (19) 

However, since DC can be considered much greater than DP or 
rH that term can be neglected.  For operation in the laminar 
regime, Re୔

∗  should be less than 5-10, while fully turbulent 
flow is observed when Re୔

∗  is above 2000. 
 
Experimental Methods 

Testing performed for the data presented in this paper were 
done in the same method as described in SPE 151889 by 
Maxey and van Zanten13.  The formation damage caused by 
the fluids was tested using an in-house Automated Return 
Permeameter (ARP) using ~100 mD Berea sandstone cores. 
The testing procedure was as follows: 
 

Core 
1. Drill 1 ½” diameter, >2” length core from sandstone 

block 
2. Dry for >16 hours in an over at 215°F 
3. Obtain weight, diameter and length for dry core 
4. Saturate in 5 wt-% NaCl under vacuum for 2 hours 
5. Soak for >16 hours in 5 wt-% NaCl 
6. Obtain weight of saturated core  

7. Calculate pore volume from dry/saturated weight  
 

Oil premeability testing – polymer/brine solution 
1. Load the brine saturated core into Automated Return 

Permeameter 
2. Raise confining pressure to 1000psi and temperature to 

200°F 
3. Flow Soltrol at 4mL/min until permeability is stable 
4. Record initial permeability 
5. Displace the damaging fluid to the face of the core 
6. Run damage with 50psi of differential pressure for 2 

pore volumes using dynamic filtration. 
7. Flow Soltrol at 4mL/min until permeability is stable 
8. Record the permeability difference as regain 

permeability 
 

Oil premeability testing – drill-in fluid 
1. Load the brine saturated core into Automated Return 

Permeameter 
2. Raise confining pressure to 1000psi and temperature to 

200°F 
3. Flow Soltrol at 4mL/min until permeability is stable 
4. Record initial permeability 
5. Displace the damaging fluid to the face of the core 
6. Run damage with 500psi of differential pressure for 2 

hours using dynamic filtration. 
7. Flow Soltrol at 4mL/min until permeability is stable 
8. Record the permeability difference as regain 

permeability 
 

Exponential shear and other rheological tests were 
performed on an Anton Paar MCR501 rheometer using a 
cone-and-plate geometry (50-mm diameter, 1° cone angle) or 
sandblasted 50-mm parallel plates at a gap of 0.5-mm.  All 
rheological tests were conducted at 120°F 
 
Results and Discussion 

Initially the regain permeability of a brine/polymer system 
was investigated to differentiate between the damaging effects 
of various polymers. Initially, two common biopolymer 
systems were looked at, one that was linear (in 14.0ppg 
CaCl2/CaBr2 brine – Linear Biopolymer #1) and one that 
contained extensive branching (in 9.5ppg KCl/NaCl brine – 
Branched Biopolymer). The regain permeability results are 
shown in Figure 1. 

The regain permebility for Linear Polymer #1 was seen to 
be 25% while the Branched Polymer was seen to be 35%. A 
hyperbranched synthetic polymer was also investigated (in 
14.0ppg CaCl2/CaBr2 brine – Hyperbranched Polymer) and the 
regain permeability was seen to be 55%. By examining the 
damage effects of the Hyperbranched Polymer and Linear 
Biopolymer #1 in the same brine, it is possible to eliminate 
artifacts induced by brine type. It is readily apparent that 
flooding the formation with any high molecular weight 
polymer can cause extensive damage, thus in field applications 
a breaker is usually included or a remedial treatment is 
performed. All systems showed extensive damage, however 
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The flow curves of the three fluids when tested at 120°F 
are presented in Figure 4a.  In addition to the three prior 
fluids, two additional fluids are compared – Linear 
Biopolymer #1 in 9.5ppg KCl/NaCl brine and a second linear 
biopolymer, Linear Biopolymer #2 in 14.0ppg CaCl2/CaBr2 
brine.  The flow curves reveal that two of the tested fluids, the  
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Figure 4 (a) Flow curves of the test fluids at 120°F.  (b) 

Predicted shear rate,	ࢽሶ , and Reynolds number,	۾܍܀
∗ , 

in the pore using the Kozney-Carman model for 
three test fluids. 

Hyperbranched Polymer and Linear Biopolymer #1, exhibit 
very weak yielding characteristics while the remaining three 

are pseudoplastic and, for the Branched Biopolymer and 
Linear Biopolymer #2, show signs of a lower Newtonian 
viscosity at very low shear rates.  In addition, the 
Hyperbranched Polymer and Linear Biopolymer #1 have a 
relatively similar viscosity and shear-thinning profile at higher 
shear rates, while the Branched Biopolymer is significantly 
more shear-thinning and has a much lower viscosity at very 
high shear rates.  For predicting shear rates of the fluids in the 
pore as a function of pressure drop, the Ellis model was used 
for the pseudoplastic systems, while those with yielding, 
viscoplastic behavior were modeled using the Casson model. 

The predicted shear rate and Reynolds number in the pore 
using the Kozney-Carman model for three fluids tested is 
presented in Figure 4b.  Each was evaluated at the initial core 
permeability observed in the regain permeability tests ILinear 
Biopolymer #2 at 75-mD), assuming a porosity of 15% and a 
pressure drop across a 2-inch length (the length of the core 
samples used in testing).  As expected from the observing the 
viscosity of the fluids in the flow curves, the Branched 
Biopolymer is expected to experience both higher shear rates 
and flow at higher Reynolds numbers at pressure drops above 
50-psi in the core test.  At the test differential pressure of 500-
psi (used for the drill-in fluid formulations), the 
Hyperbranched Biopolymer and Linear biopolymer #1 would 
be expected to have an average shear rate of ~500 s-1 in the 
pore, while the Linear Biopolymer #2 would have a shear rate 
of ~100 s-1 and Branched Biopolymer fluid would have a shear 
rate as high as ~10,000 s-1.  However, even at this extremely 
high predicted shear rate, Re୔

∗  remains below ~0.5, well within 
the fully laminar flow region.  For the permeability tests with 
polymer / brine fluids, where a lower pressure differential of 
50-psi was used, the shear rate for all three fluids tested in the 
permeameter are equal, at 42 s-1, and Re୔

∗  is ~10-6.  (For the 
Linear Biopolymer #2, these would be ~2 s-1 and Re୔

∗  ~10-8 
for a 50-psi differential.)  This would indicate that even with 
the potential for high shear rates in the formation pores at high 
differential pressures, there is little likelihood of turbulent 
flows causing mechanical breakages of the rock which would 
lead to blockages.  Therefore, any resultant formation damage 
in these tests can be viewed as a direct result of polymer 
behavior.   

From the regain permeability results, it is easy to draw a 
conclusion that degree of chain branching has some effect on 
the total damage done to a formation by the polymer.  
Exponential shear tests were performed to further evaluate a 
rheological motivation for the induced damage, which could 
then be applied to polymer solution or to other non-polymeric 
fluids.  The results of exponential shear tests on the polymer / 
brine fluids at constant values of A=1 and increasing α from 
0.01 to 1 are presented in Figures 5 and 6.  Several similarities 
and differences can be observed between the fluids.  First, for 
the Branched Biopolymer (Figure 5a) the instantaneous 
exponential viscosity, ηe, is observed to initially increase with 
strain (e.g. the effective pore length over which shear has been 
experienced) regardless of the value of α, the acceleration rate 
of the shear, used for the test.  At a common strain of ~1, the  

(a) 

(b) 
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Figure 5 The instantaneous exponential viscosity, ηe, as a 
function of increasing strain for (a) the Branched 
Biopolymer in monovalent brine and (b) the 
Hyperbranched Polymer in divalent brine.  For 
each fluid tests were conducted at a temperature of 
120°F and the strain scale factor, A, was held 
constant at 1 while the exponential rate constant, α, 
was increased from 0.01 to 1. 

exponential viscosity reaches a peak and begins to decrease 
with strain; since strain rate is also increasing with the 
increasing strain, this is observed as a simple shear-thinning 
response.  However, at higher acceleration rates this shear-
thinning behavior slows and ηe beings to plateau at high values  
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Figure 6 The instantaneous exponential viscosity, ηe, as a 
function of increasing strain for (a) Linear 
Biopolymer #1 in divalent brine and (b) Linear 
Biopolymer #2 in divalent brine.  For each fluid 
tests were conducted at a temperature of 120°F and 
the strain scale factor, A, was held constant at 1 
while the exponential rate constant, α, was 
increased from 0.01 to 1. 

of strain.  This is a strain-hardening effect, where at very high 
strains the stretching of the polymer chains begins to hinder 
further flow.  From this is can be surmised that the extensional 
viscosity in the pore is increasing, also due to chain stretching, 
thus preventing the invasion of the polymer chain into the 

(a) 

(b) 

(a) 

(b) 
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pore. 
For the Hyperbranched Polymer, the same increase in ηe 

through a strain of ~1 is observed; however, at higher 
acceleration rates the peak becomes muted and eventually 
vanishes.  Also, for moderate acceleration rates ηe tends to 
collapse onto a single line at high strains; since the shear rate 
for a particular strain is higher when the acceleration rate is 
higher, this coalescence of viscosity/strain curves translates to 
increasing viscosity for a common shear rate.  Again, as in the 
Branched Biopolymer, strain-hardening is observed at the 
highest acceleration rates. 

When considering Linear Biopolymer #1 (Figure 6a), we 
do not observe the same peak in exponential viscosity at low 
strains as seen in the Branched and Hyperbranched Polymer 
fluids.  This is not simply a function of the shear viscosity of 
Linear Biopolymer #1 fluid, as it is very similar to that of the 
Hyperbranched Polymer fluid, and must be a function of the 
polymer chain and/or its interaction with the brine.  In 
addition, at high strains shear-thinning continues – even at the 
highest accelerations rates.  No strain-hardening is observed in 
the Linear Biopolymer #1 / brine fluid system.  This lack of 
strain-hardening (e.g. lack of increased resistance of the 
polymer chains to flow over long distances through the pore) 
translates into an ability for Linear Biopolymer #1 to penetrate 
further into the formation, thus increasing interactions of the 
polymer with the formation (absorption onto the pore walls) 
and increasing the difficulty of removing the linear polymer 
from the formation and decreasing the observed regain 
permeability. 

By comparison, Linear Biopolymer #2 exhibits several 
similarities in exponential shear tests to Linear Biopolymer #1.  
While the data at different acceleration rates do not quite 
collapse onto a single curve as in Linear Biopolymer #1, there 
is the same consistent shear-thinning at high strains.  At the 
highest acceleration rates, at very high strains, there is a small 
positive inflection indicating some strain hardening, but not 
nearly to the degree observed in the Branched and 
Hyperbranched Polymer fluids.  While not yet tested in the 
permeameter, this fluid would be expected to perform 
marginally better than Linear Biopolymer #1, but not as well 
at the Branched or Hyperbranched Polymer fluids. 

By way of comparison of the effects of brine on the 
polymer fluid, exponential shear tests were also conducted on 
Linear Biopolymer #1 in monovalent brine, 9.5ppg KCl/NaCl, 
using the same polymer loading as in the divalent brine tests.  
The flow curve for this fluid can be seen in Figure 4a, and the 
exponential viscosity as a function of strain for this system is 
presented in Figure 7.  By changing the brine, and thus the 
charge screening effects on the Linear Biopolymer #1 chain, 
the rheological properties of the fluid were dramatically 
changed.  Unlike when tested in divalent brine, Linear 
Biopolymer #1 in monovalent brine exhibits very similar 
exponential shear results as does the Branched Biopolymer in 
monovalent brine.  A defined exponential viscosity peak is 
observed at strain of ~1, as well as the onset of a plateau in ηe 
at high strain and high acceleration rates.  However, the 
degree of strain-hardening observed is not as great as in the 

Branched or Hyperbranched Polymer fluids; this likely 
indicates that Linear Biopolymer #1 in monovalent brine 
would exhibit improved regain permeability results, but still 
not as high as observed in the Branched or Hyperbranched 
Polymer fluids. 
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Figure 7 The instantaneous exponential viscosity, ηe, as a 
function of increasing strain for the linear 
biopolymer in monovalent brine at 120°F. 

A comparison of the instantaneous exponential viscosity 
for the four polymer / brine fluids, plus for Linear Biopolymer 
#1 in monovalent brine, at a common acceleration rate of α = 
0.5 is presented in Figure 8.  From this a basis for modeling 
the formation damage from exponential shear tests can be 
begun.  These curves were produced at two different values of 
the strain scale factor, with A = 0.1 and A = 10, the results of 
which overlapped well to produce a single continuous curve.  
The previously noted appearance of strain hardening in the 
Branched and Hyperbranched Polymer fluids is again evident, 
with the Hyperbranched Polymer fluid showing a positive 
inflecting indicating strain hardening at lower strain (γ = ~6) 
than any other fluid.  The Branched Biopolymer fluid shows 
inflection at a strain of γ = ~200.  Both of these also exhibit 
increased stiffness at very high strains.  Linear Biopolymer #1 
never exhibits a positive inflection indicating strain hardening; 
instead, at the highest strains a negative inflection is observed 
indicating some degree of strain softening.   

This progression follows that of the observed damage done 
to core samples in permeability testing: 

Strain, γ, at which Strain Hardening Begins 
Hyperbranched	

Polymer	 ൏ 	
Branched	
Biopolymer	 	൏ 	

Linear	
Biopolymer	#1 

Degree of Formation Damage Incurred 
Hyperbranched	

Polymer	 ൏ 	
Branched	
Biopolymer	 	൏ 	

Linear	
Biopolymer	#1 
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By following this trend we could predict that Linear 
Biopolymer #1 in monovalent brine, which shows a modest 
positive inflecting at γ = ~1000, would have produce less 
formation damage than when run in divalent brine but still not 
have a high a regain permeability as the Branched 
Biopolymer.  Similarly, the tests on Linear Biopolymer #2 
indicate a modest positive inflection at γ = ~3000, placing its 
potential for formation damage again between the Branched 
Biopolymer and Linear Biopolymer #1 in divalent brine and 
potentially marginally worse than Linear Biopolymer #1 in 
monovalent brine. 
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Figure 8 Comparison of the instantaneous exponential 
viscosity, ηe, for the various test fluids at a constant 
exponential rate of α = 0.5. 

 
Conclusions 
 The degree of polymer branching affects the potential 

for a fluid to reduce the permeability of a formation. 
 Rheological behavior of polymer solution in shear and 

extensional flows affects the flow of a fluid in porous 
media, and thus the potential for a fluid to reduce the 
permeability of a formation.  As an analog for the 
mixed shear and extensional flows observed in porous 
media, exponentially increasing shear is potentially a 
good and fast measure for the degree of formation 
damage expected from a fluid. 

 The onset of strain-hardening at moderate to high 
exponential acceleration rates in the Branched and 
Hyperbranched Polymer fluids are indicators of their 
lack of ability to deeply penetrate into the formation.  In 
contrast, the lack of such strain-hardening in the Linear 
Biopolymer #1 in divalent brine indicates potential of 
greater penetration and thus greater damage to the 
formation. 

 The selection of brine has an effect on the behavior of 
the polymer in flow through porous media.  While the 
brine itself does not directly affect the degree of 
damage caused to a formation, it can affect the 
appearance of strain-hardening in different polymer 
systems and thus influence regain permeability. 

 
Nomenclature 

A = strain scale factor 
DC = porous bed column diameter 
DP = porous bed particle diameter 
f(σ) = function describing the relationship between shear 
rate and shear stress in a fluid 
k = permeability 
k0 = shape factor in Kozeny-Carman model (=2.5) 
L = length over which pressure drop is evaluated 
ΔP = pressure drop 
rH = hydraulic radius of the pore 
<u> = average velocity in the pore 
 ത௪ = velocity at the wallݑ
α = exponential rate constant 
αE = shear-thinning index in the Ellis model 
γ = strain 
ሶߛ  = strain rate 
η = viscosity 
η0 = zero-shear viscosity in the Ellis model 
η1 = plastic viscosity in the Casson model 
ηD = Darcy viscosity 
ξ = aspect factor in Kozeny-Carman model (=3.0) 
ρ = density 
σ = shear stress, with an overbar and subscript w it 
indicates average stress at the wall 
σ0 = yield stress in the Casson model 
σ2 = the shear stress value at which η has fallen to half 
its final asymptotic value in the Ellis model 
KC = tortuosity in Kozeny-Carman model (=√2 ) 
ϕ = porosity 

 
Acknowledgments 

The authors would like to thank Halliburton for permission 
to pursue and publish this research.  We would also like to 
thank Gareth McKinley at MIT for helpful conversations in 
beginning to explore exponential shear. 

 
References 
 

1. Audibert, A., et al. 1999. “Role of Polymers in Formation 
Damage.” SPE 54767 presented at the SPE European 
Formation Damage Conference, The Hague, The Netherlands, 
31 May-1 June 2. 

2.  Javora, P.H., et al. 2000. “Viscosification of Oilfield Brines: 
Guidelines for the Prevention of Unexpected Formation 
Damage.” SPE 58728 presented at the SPE International 
Symposium on Formation Damage Control, Lafayette, LA, 
USA, 23-24 February. 

3. Jones, D.M. and K. Walters. 1988. “Extensional Viscosity 
Effects in EOR.” SPE 18070 presented at the SPE Annual 

 



AADE-12-FTCE-20 Investigating Fluid Invasion into Formations Using Exponential Shear 9 

 
Technical Conference and Exhibition, Houston, Texas, 2-5 
October. 

4. Svendsen, Ø., et al. 1998. “Optimum Fluid Design for Drilling 
and Cementing a Well Drilled with Coil Tubing Technology.” 
SPE 50405 presented at the SPE International Conference on 
Horizontal Well Technology, Calgary, Alberta, Canada, 1-4 
November. 

5. Flory, P. 1953. Principles of Polymer Chemistry. Ithaca, NY: 
Cornell University Press. 

6. Flory, P. 1969. Statistical Mechanics of Chain Molecules. New 
York, NY: Interscience. 

7. Doshi, S.R. and J.M. Dealy. 1987. “Exponential Shear: A 
Strong Flow.” Journal of Rheology 31(7), 563-582. 

8. Venerus, David C. 2000. “Exponential Shear Flow of Branched 
Polymer Melts.” Rheologica Acta 39, 71-79. 

9. Kwan, T., et al. 2001. “An Experimental and Simulation Study 
of Dilute Polymer Solutions in Exponential Shear Flow: 
Comparison to Uniaxial and Planar Extensional Flows.” 
Journal of Rheology 45(2), 321-349. 

10. Dealy, J.M. and R.G. Larson. 2006. Structure and Rheology of 
Molten Polymers. Hanser Publishers. 

11. Kozicki, W. and C. Tiu. 1988. Parametric Modeling of Flow 
Geometries in Non-Newtonian Flows. Encyclopedia of Fluid 
Mechanics: Rheology and Non-Newtonian Flows. N.P. 
Cheremisinoff (ed.), Houston, TX: Gulf Publishing Co, 7, 199-
252. 

12. Masuda, Y., et al. 1992. “1d Simulation of Polymer Flooding 
Including the Viscoelastic Effect of Polymer Solution.” SPE 
19499, SPE Reservoir Engineering, 247-252. 

13. Maxey, J. and R. van Zanten. “Novel Method to Characterize 
Formation Damage Caused by Polymers.” SPE 151889 
presented at the SPE International Symposium and Exhibition 
on Formation Damage Control held in Lafayette, Louisiana, 
USA, 15–17 February 2012. 


