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Abstract 

Predicting completion time in deepwater wells is an 
imminent necessity in the modern well construction cycle. The 
primary objective of this paper is to present a novel integrated 
approach of statistical analysis and neural network models to 
identify well characteristics and their impact on total time to 
complete a well.  

Using a neural network, fifteen crucial attributes from the 
Dodson Database were used in this study and analyzed for 
relative impact with respect to time. These attributes included 
primary parameters such as well depth and interval number. 
Wells in the database were assigned a value, depending on 
their fifteen attributes, that correlated to length of time to 
complete.  

The program designated prospect wells a value using the 
same time weighted impact system, as well as the same impact 
parameters. Wells within the database with most similar 
values to the prospects were used in the statistical analysis for 
total completion time. 
Actual data were used for fifteen parameters in the program 
for “Dark Star,” “Liberty,” and “Terrapin” to test the 
reliability of the statistical analysis. Estimates for “Dark Star” 
and “Liberty,” which were completed in 2014, were within 5% 
of field completion time. “Terrapin” is yet to be completed; 
however, the programs estimate was within 3% of the 
Approval For Expenditure (AFE). With access to the data 
provided by Stone Energy as one of the active operators in 
GOM, this paper presents a valuable methodology to estimate 
completion time. 
 
Introduction  

Quest for hydrocarbons and rich oil reservoirs have made 
offshore environments a lucrative target for energy industry. 
Data provided by Bureau of Ocean Energy Management 
shows a huge increase for drilling in deep water from early 
offshore drilling in 1960s to present. Water depths often can 
go up to more than 10,000ft.   Drilling in these offshore 
environments is a complex and risky process. Regardless of 
advancement in technologies to extract, drill and produce 
hydrocarbons, uncertainties are part of important factors in 
risk assessments and safety procedures. Huge cost associated 
with deep water projects is another key factor to be considered 
in pre-planning phase.  

 
Often times, wells are drilled without encountering any 

hydrocarbons. Other times, hydrocarbons are encountered, but 
the targets are not profitable enough to cover the expense for 
drilling and completion operations. Needless to say, 
companies who are invested in a well want to have an estimate 
of how much it would cost to complete it. Thus, it is important 
to analyze costs prior to initiating any well plan. 

Completion time estimates could be a determining factor 
as to whether or not to drill a well. The problem is that 
deepwater operations are relatively new and there is little 
completion data from which to base the estimates. Stone 
Energy recently developed a deepwater department, thus, even 
less data was available to estimate completion costs for 
deepwater wells in the Gulf of Mexico. Improving the 
completion time estimates was crucial for the newly 
developed Stone Energy deepwater department. 

The number one factor affecting drilling and completion 
costs is time; the longer it takes, the more it costs. Therefore, 
the primary objective of this study was only to improve Stone 
Energy’s statistical time estimates for deepwater completions. 
Previous deepwater completion time estimates were based on 
experience, rather than statistics. This was due to a minimal 
amount of data in the archive, as the Stone deepwater team 
was only recently developed. 

Statistical time estimates for operations are typically 
performed at the preliminary stage of the total cost estimate 
for a well (drilling and completions). In addition, front-end 
time estimates are expected to be within ±40% of the actual 
completion field days. These estimates are fine-tuned as well 
planning progresses and more details are available, but there is 
the potential need for multiple preliminary statistical time 
estimates at once. 

Stone Energy, an independent operator in Gulf of Mexico 
has recently received 40 prospect wells that required 
preliminary statistical cost estimates in a two-week period. 
With the accuracy only needing to be within 40% and the 
potential to have multiple prospect wells in a short period of 
time, spending substantial amounts of time on every well 
estimate would be a poor use of company resources. Thus, 
developing a user-friendly program that could rapidly perform 
statistical time estimates within the allotted accuracy range for 
deepwater completions was essential. 
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Dodson Datasystems 
Dodson Datasystems® is a company that stores enormous 

amounts of drilling and completion data from a variety of 
operators in the Gulf of Mexico. Operators submit specific 
well parameters to the database, as well as time segments in 
two different stages: after drilling and after completion. The 
purpose of the database is to benchmark operators in the 
system. 

Operators, who are subscribed to Dodson Datasystems, are 
allowed to view data from all the other operator’s wells, 
provided they are subscribed as well. It is a useful tool for 
comparing performance of operators with each other, but the 
data can also be used to estimate the time to drill and complete 
a well. While Dodson Datasystems stores time data for a 
substantial amount of wells, it also considers the difficulty of 
the wells for benchmarking purposes. 

Completion risk index (CRI) is Dodson Datasystems’ 
approach to numerically measure the difficulty of a well. 
Therefore, if it takes a significant amount of time to complete 
a well with a higher complexity, it will be normalized when 
compared to easier wells. CRI is calculated using a Dodson 
Datasystems copy written formula and is included with every 
completed well that is submitted to the database. The CRI of 
every well considers 16 variables obtained from well attributes 
in the formula, all of which are required to be submitted by the 
operator upon completion of the well (Table 1). Figure 1 
displays a consistent relationship between the CRI to 
completion time when plotted (IHS, 2013). Thus, the CRI 
alone can be a useful tool to estimate completion times. 

The primary objective of this study was to improve 
statistical time estimates and create a program that simplifies 
the process. CRI is calculated using an algorithm, not 
statistically. If the CRI was used in the study, predictions 
would be made from predicted data, which would result in 
further error. Therefore, the CRI was not considered in this 
study. However, the study has the same premise as the CRI, a 
way to relate well parameters to completion time. 

Data for 168 wells are stored in the Dodson Datasystems 
deepwater completion database. This data was obtained from 
wells that used deepwater rigs only: semi-submersible, 
platform, or drillship. As discussed earlier, this small number 
is due to deepwater operations being relatively new to the oil 
and gas industry. In addition to that, completions data are 
significantly smaller in the deepwater database in comparison 
to drilling, which has data for over 1,000 wells in the Dodson 
Datasystems database. 

This study focused on the completion data within the 
Dodson Datasystems database, specifically, time data in 
relation to completion characteristics of wells. The drilling 
database defined total drilling time as spud to TD; total 
completion time was not this simple. Dodson Datasystems 
completion times were divided into nine different segments, 
and the non-productive time (NPT) associated with those 
times (Table 2). 

All times had clear definitions of when they begin and end. 
For example, run and cement casing time started when the last 
logging tool was laid down and ended just prior to picking up 

the completion string to begin displacement (IHS, 2014). 
The explanation for the nine time segments, as opposed to 

having set start dates and stop dates, was due completions 
having different operational procedures. For instance, not 
every well in the database ran and cemented casing. For that 
reason, the completion start date could not be defined solely 
by the commencement of running and cementing casing. This 
created consistency between wells within the database. 

Additionally, there were wait on weather (WOW) times 
and rig failure times. Dodson Datasystems subtracted these 
times from the total completion time, as they do not accurately 
portray an operator’s performance.  

Having a clear definition of these time segments was 
crucial to this study, so that all the well times in the database 
were consistent with one another. Different operators will 
have different definitions of when a particular procedure starts 
and stops; Dodson Datasystems eliminated the potential for 
this variability. 

Additionally, blow out preventer (BOP) certification times 
were not included for the wells in the Dodson Datasystems 
database. The British Petroleum (BP) oil spill in 2010, also 
known as the Macondo blowout, is responsible for the 
discrepancy in BOP certification times. Before the Macondo 
blowout, BOPs were not required to be certified before each 
new well. Post-Macondo wells were required to have BOPs 
certified prior to being latched, which added on about two 
weeks to total completion time on average. A database 
containing wells with BOP certification times and without 
BOP certification times would severely skew the total 
completion time statistical estimate.  
Neural Networking 

 
Methods 

With only 168 wells in the deepwater completions 
database, it was difficult to filter out wells with similar 
characteristics. If a prospect well is greater than 25,000 feet 
and the wells were filtered by this criteria, the sample set 
would not be robust enough to perform a statistical analysis. 

Approach based on using every well in the database would 
not give an accurate statistical representation of completion 
time. Furthermore, it cannot also provide an average time for 
all of the wells. If a prospect well with a total depth of 25,000 
feet was to be analyzed for total completion time, using a well 
with a depth of 5,000 feet in the analysis would typically not 
be practical. Therefore, using this type of wells in the 
statistical analysis would give erroneous results. 

An important step in data analysis is data normalization. 
By normalizing the data,any combination of wells could be 
used in the statistical analysis, regardless of whether or not the 
well characteristics were the same. 

Well parameters, used in the CRI formula, were plotted 
against the different time segments obtained from Dodson 
Datasystems. This method was obtained from performing the 
theoretical background (Dawson et al., 1987). For instance, 
completion time previously was thought to increase with 
interval length. This process was repeated for every applicable 
well parameter against every Dodson Datasystems time 
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segment, which resulted in over 750 plots. Scatter in the data 
made it difficult to decipher any true correlation between the 
parameters and completion time. Results of these plots were 
not significant enough to base any statistical time estimations. 
Additionally, there were two important explanations for not 
taking this approach: 

1) Using every well in the database would not produce as 
accurate results as using a subset of wells with similar 
completion times. 

2) Applying a trend line to all the data to fit our 
empirical equations for well parameters would be 
more representative of approaching the solution from 
an answer. 

It was decided that another method of analysis was needed 
as the foundation of the time estimates. 

 
Neural Network 

Neural networks, or artificial neural networks, are 
mathematical constructs that were inspired by biological 
neural networks (Heaton, 2010). They are effective when it 
comes to accomplishing simple tasks, but they are particularly 
useful for recognizing patterns. The network structure is 
composed of input layers, hidden layers, and output layers. 

The input layers are the data which are utilized in the 
analysis to predict the output layer. Within a dataset of six 
fields, five of the fields will be used to predict values within 
the sixth via pattern detection. These five fields may contain 
continuous or discrete variables, all of which are on different 
scales (Heaton, 2010). With the original input values, these 
fields cannot be compared to one another because they are not 
normalized. 

Neural networks take these inputs of various scales, and 
convert them all on a scale of zero to one (Microsoft, 2014). 
This process is called scoring. These values are then 
normalized, so that they can be analyzed for their effects on 
the sixth field. The hidden layer accounts for independent and 
dependent variables. If two input parameters affect the output 
together, but not individually, they still need to be accounted 
for. For instance, if one of the five fields was removed from 
the analysis, the scores for all the variables would likely 
change.  

Neural network models were used in this study to 
normalize the well characteristics, so that the properties were 
weighted relative to their impact on completion time. Thus, it 
was not important whether all the wells utilized in the analysis 
had similar water depths, as the other well properties would 
compensate for the differences. 

For a statistical analysis to be valid, a minimum sample 
size of 30 must be used (Hubele, 2011). Thirty wells (30), 
from the database of 168, were used in each analysis. 
However, these sample wells require a combination of 
properties that would impact completion time similarly to the 
prospect well, regardless of whether the properties were the 
same or not. Therefore to execute this plan, completion 
properties of the wells needed to be analyzed with respect to 
completion time. 

The background study conducted revealed that the primary 

driving factor for total completion time was well depth. 
However, the review did not elaborate on how much of an 
impact in comparison to other well properties. While it was 
easy to say that deeper wells typically took longer to complete, 
it was not as easy to explain why some deeper wells were 
completed faster than shallow wells. Therefore, other factors 
must have been contributing to the total well time, like the 
number of intervals. 

The goal of this study was to identify which characteristics 
impact time, but primarily to determine the extent. As 
discussed earlier, Dodson Datasystems used the CRI value to 
numerically evaluating the difficulty of a well’s completion. 
This value was calculated using the inputs outlined in Table 1. 
A discussion over the CRI was had with Stone’s completion 
engineers to determine which of the input parameters were 
applicable to this study. Few of the parameters were omitted, 
but the majority was to be used in the neural network analysis.  

When data is exported from the Dodson Datasystems 
database, it is exported with information for well intervals 
(Table 3). Table 3 displays a two interval well with parameter 
and time data; more data is displayed when exported from 
Dodson Datasystems, but not necessary to convey the 
message. The blank cell in the interval column is a summary 
of the total well, however, the data cannot be exported as the 
well summary only. Thus, wells with more than one interval 
needed to be combined for this study. It was decided that the 
deeper the interval, the longer the completion would take. The 
deepest interval was recorded for wells with more than one 
interval, likewise, the longest interval was recorded. This 
process was repeated for all 15 applicable well parameters. 
Once all interval data had been combined into well data, the 
neural network analysis could commence.  

Microsoft Excel, in combination with SQL Server, was the 
program used to perform the neural network analysis 
(Microsoft, 2014). SQL Server Data Mining Add-Ins for 
Office needed to be installed in Microsoft Excel to perform 
any of the neural network analysis. While this powerful 
software can perform multiple functions, the Prediction 
Calculator was the only tool used in this study.   

Prediction calculator uses the Microsoft Logistic 
Regression algorithm, but it is simplified to be user friendly. 
Logistic regression is a method of determining the 
contribution of multiple factors to a pair of outcomes. As 
discussed earlier, the multiple factors are converted on the 
same scale and designated scores depending on their effect on 
the outcome pairs. The factors used in the analysis can be 
either discrete or continuous variables. Microsoft calls this 
process of converting these values the Z-Score normalization 
(Microsoft, 2014).  

Step one of this process was to choose a target column 
within the dataset to define the pair of outcomes in the 
analysis. The objective of performing a neural network 
analysis was to compare well parameters for impact on total 
completion time, thus, the target column was total completion 
time. A maximum value, a minimum value, and a median 
were obtained from the total completion time data and were 
10.2 days, 34.1 days, and 210 days, respectively. The pair of 
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outcomes selected for the analysis was the time data in the 
range of 10.2 days to 34.1 days and 34.1 days to 210 days. The 
theory behind this method was to completely divide the 
dataset in half, and compare 50% of the wells with faster 
completion times to wells with 50% of the wells with longer 
completion times. The explanation for this was that wells in 
the 50th percentile to the 100th percentile would have 
attributes that impact completion time more than those in the 
1st percentile to the 50th percentile (Figure 2). 

Once the pair of outcomes were selected, well 
characteristic categories used in the analysis were selected. 
These were the 15 parameters that were obtained from the 
Dodson CRI calculation. Columns of data for each of the 15 
parameters for all 168 wells were selected to be used in the 
analysis and compared to completion time.  

When the program was run, it went through iterations 
using Equations 6 – 9 to determine the scores of every 
potential input for every category. Impact results for every 
possible input were obtained (Table 4). 

Results were all on the same relative impact scale, 
regardless of the category. Now the number of intervals could 
be compared to completion depth to determine, which 
typically impacts time more. The higher the value of the 
relative impact of each parameter, the more likely a well with 
that characteristic was to be in the 50th to 100th time 
percentile range. 

Results from the first iteration of this process were 
inconsistent. For instance, as interval depth increases, so 
should the impact on completion time. However, this was not 
the case in Table 4. Results indicated that interval bottom 
depths within the range of 14,469 feet to 17,800 feet would 
likely take less time than interval bottom depths within the 
range of 10,999 feet to 14,469 feet. This is likely attributed 
wells to having inconsistent steps during the completion 
process.  

As discussed earlier, time data in Dodson Datasystems was 
broken down into segments, as opposed to simply a start date 
and a stop date. This was due to the wide variety of steps that 
may or may not be performed during the completion process 
(IHS, 2014). This subject was discussed with the Stone 
completion team and it was decided that three time segments 
would not always be performed: Run and Cement Casing, 
Well Test, and Temporarily Abandon (TA) Re-Entry. That 
being said, wells that performed all of these processes, but had 
characteristics that would typically not have a significant 
impact on time, were skewing the data. To remedy this, the 
neural network analysis needed to be performed against total 
time with every possible combination of these three segments 
subtracted out. This resulted in eight different time columns 
(Table 5) and eight different impact scales (Table 6). 

When the analysis was run against the eight different time 
columns, there were eight different impact values for every 
single parameter. Results were still skewed for all the potential 
impact columns (Table 6), for the same reason stated earlier. 
Some variables had a significant impact in one column, but a 
minor impact in another. However, if a variable had a 
significant impact in any column, it could be argued that it had 

an impact on completion time but it was skewed from 
breakdown of the time datasets. In order to portray this, the 
maximum value of each variable needed to be taken from all 
the relative impact time columns (Table 7). 

This eliminated any skewed data from the inconsistent 
completion times. Maximum values obtained from this 
analysis were to be used as the scaled weight system of well 
parameters with respect to time. With the new scaled weight 
system, it was not as important that wells with exact or similar 
properties as the prospect well were in the database.  

Every well in the database was assigned a score, 
determined from the well parameters for the fifteen categories. 
Each well attribute was linked to the weighted scale, and that 
corresponding value was applied to the well. Impact values for 
all 15 parameters were assigned to every well in the database, 
depending on the well characteristics (Figure 4). 

For each well, the relative impact values were summed to 
give the well a time score: the higher the score, the higher the 
likelihood of increased completion time (Table 8). 

The program was designed to have user inputs for prospect 
wells that were linked to the same weighted scale system. 
Thus, the prospect well would be assigned a score using the 
exact same scale as every well in the database. The relative 
impact values of the prospect well were summed to designate 
a score as it relates to time. Wells with similar scores were 
more likely to have similar completion times, regardless of 
how similar the well properties were. This was the foundation 
for how the 30 wells were selected for the sample set to be 
used in the statistical analysis. 

Scores of every well in the database were linked to the 
score of the prospect well. The absolute value of the difference 
between the well scores in the database and the prospect well 
score were taken. These were the values used to sort the data 
for wells with the most similar completion times. The smaller 
the difference, the closer completion time between wells. 
However, there were still some adjustments that needed to be 
incorporated into the program in order to produce accurate 
results.  

 
Statistical Analysis 

Stone engineers decided that they wanted to filter the data 
depending on whether the tree was located subsea or at the 
surface. Macros needed to be written to determine which time 
column the statistical analysis should be run on. These macros 
were dependent on the user’s selection on the data sorting 
page. 

The user decides whether the data should be sorted by 
subsea tree only, surface tree only, or all wells regardless of 
tree location. Additionally, the user determines which times to 
include in the statistical analysis, results will change 
accordingly. Therefore, if the prospect well plan did not 
include a well test, the user would select the radio button of 
“no well test” in whichever column was most applicable. 

Originally, the only statistical results were going to be 
10th, 25th, 50th, 75th, and 90th percentiles from the sample 
dataset of the closest 30 wells. This is due to outliers have 
much less of an impact on the median as opposed to the mean. 
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For instance, the 100th percentile of the entire dataset is 210 
days, which would significantly skew the average of the 30 
wells if it were to be selected sample where the remainder of 
the wells averaged to be about 25 days. If the 100th percentile 
of the sample set was the only value to change, it would not 
skew the median at all. It would be irrelevant whether the 
100th percentile was 100 days or 45 days. The same procedure 
was followed for the calculating NPT for the sample wells. 

Though this method produced accurate results, a more 
detailed analysis needed to be performed. First, it was 
necessary to determine the distribution of the entire dataset. A 
program, Rose & Associates Toolbox, was utilized to 
determine the statistical distribution of the all the wells in the 
dataset. The program resulted in a log-normal distribution. 

Second, for reassurance, the program was run on a few 
sample sets of thirty wells depending on the 15 different input 
parameters. Results from the sample sets also resulted in a log-
normal distribution (Log-normal Solutions, 2012). For the 
program to remain user friendly, a log-normal distribution was 
used for the statistical analysis, regardless of the sample set. 

For the closest thirty wells that resulted from the sort, the 
natural log needed to be taken for each of their completion 
times (Equation 1). 

 = ln(completion time for each well)………..……(1) 
The average of the thirty log-normal distribution times 

were taken to get a new distribution mean (Equation 2). 

……..…..……………………….……..…(2) 

The standard deviation of the log-normal distribution times 
were taken to get a new distribution standard deviation. 

….…………….…..…….(3) 

Then the log-normal inverse could be taken to determine 
the probabilities (Equation 4). 

……….….......(4) 

The natural log of the total time for every well in the 
database was taken, then the mean and standard deviation of 
these values were obtained to develop probabilities from the 
lognormal dataset. The lognormal distribution of the closest 
thirty wells and every well in the database resulted in the 
following probabilities: P10, P25, P50, P75, and P90 (Table 
9). 

Additionally, the Swanson Mean was available for those 
who choose to use it (Log-normal Solutions, 2012). 

The Swanson mean is calculated using Equation 5:  
Swanson Mean = 0.3*P10+0.4*P50+0.3*P90  (5) 
Example results from running the program are displayed in 

Table 9. 
To ensure there were no errors as to which parameters the 

data was sorted from, a sorting criteria box displays the inputs 
to the left of the results. 

The process was repeated using 75 percent of the wells to 
train the data, and 25 percent of the wells to test the data. 
Entirely new relative impact values were obtained using the 
126 wells. Maximum values for every parameter were taken 
after the Prediction Calculator was run against the eight 

different time combinations. The 42 test wells were then 
plugged into the developed program to test the reliability. 
While the average of the program results was still within 40 
percent of the targets, approximately 33 percent, taking out 42 
wells hindered the accuracy. Even without knowing the 
accuracy of the model, it is understood that more data used to 
train a model will produce better results. Thus, the original 
program will be used for the remainder of this study. 

Input parameters for three Stone wells were used for 
quality control of the program: Dark Star, Liberty, and 
Terrapin. Prospect well names have been altered to protect 
Stone Energy confidentiality. Dark Star and Liberty were 
completed in early 2014, thus, program results could be 
compared to actual completion field days that were submitted 
to Dodson Datasystems. Unfortunately, Terrapin was planned 
to be completed in mid-2015, so field days were unavailable 
for a comparison. However, Terrapin’s Approval for 
Expenditure (AFE) had already been completed and the 
normalized AFE days could be compared to the program 
results. 

It is important to note that Dodson had a clear definition 
for the time breakdown, so that all time data was consistent 
throughout the wells in the database. AFE days needed to be 
normalized to subtract out BOP certification times, because 
many of the wells were pre-Macondo and did not include BOP 
certification times. It would be impractical to estimate 
completion time of a well if the data used in the analysis had 
different time definitions. 
 
Results 

A statistical time estimate is only as accurate as the data 
used in the analysis. Estimations in this study used data 
obtained from Dodson Datasystems. Thus, program developed 
in this study produced total completion time results, as 
Dodson Datasystems described it. Luckily, Dodson did an 
excellent job normalizing the data, so that there was 
consistency throughout the dataset. The clear definitions of the 
time segments ensured that there were no discrepancies of 
time data between the wells. BOP certification times were not 
included in the statistical time estimates, as they were not 
included in the Dodson data. Multiple wells were submitted to 
Dodson prior to the Macondo blowout, thus, they did not 
include BOP certification times. Wells submitted after the 
Macondo blowout were required to certify the BOPs, which 
took an additional two weeks on average. 

The entire objective of this study was to estimate total 
completion time for deepwater Gulf of Mexico wells, based 
off of well attributes. A dataset where some wells included 
BOP certification times and some wells did not would 
severely skew the results of the time estimate. Dodson 
Datasystems mitigated this problem by normalizing the data 
and subtracting out the BOP certification times all together. 

Operators typically included BOP certification time in 
their definition of total completion time, but these statistical 
estimates cannot be performed without enough data. For best 
results, approximately two weeks should be added to the total 
completion time after running the program. 
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Results of the analysis for the three wells were extremely 
consistent. Completion parameters for Dark Star were input 
into the program. The program was run using wells with 
subsea trees only and with well test times subtracted out. 
Percentile and probability results are displayed in Table 10. 
Completion parameters for Liberty were input into the 
program. The program was run using wells with subsea trees 
only and with well test times subtracted out. Percentile and 
probability results are displayed in Table 11. Completion 
parameters for Terrapin were input into the program. The 
program was run using wells with subsea trees only and 
inclusive of all times. Percentile and probability results are 
displayed in Table 12.  

 
Conclusions 
Discussion of Results 

For this study, it was determined that the 50th percentile 
was the most accurate representation of well time, as it 
eliminates the effect of outliers. 

Previously, the 50th percentile was used as the AFE days 
and the 25th percentile as the TF days. However, the program 
can calculate the TF days by subtracting the NPT from the 
corresponding total time. Additionally, the probabilities can be 
used for the time estimation, as the results were similar to the 
percentiles. The program allows for the user to determine 
which values to use for the time estimation. Results from this 
study indicated that the most accurate representation of the 
actual field days was the 50th percentile, which was what the 
program was originally designed to do. The program 50th 
percentile results, normalized AFE days, and actual field days 
for the three Stone wells is displayed in Table 13. 

For Dark Star and Liberty, the program results were within 
five percent of the normalized field days. These were actually 
more accurate than the normalized planned AFE days, as 
shown in the “Days (% of Field)” row. For Terrapin, the 
program estimation was within one day of the planned AFE 
days. 

Though the probabilities from the lognormal distribution 
did not give as accurate of results as the 50th percentile for 
Dark Star, Liberty, and Terrapin in this study, they will 
improve as the dataset increases. It is likely that the 
probability results will surpass the percentile results when it 
comes to accuracy when the dataset becomes more robust. 

As stated earlier, the purpose of this study was to develop 
a program that could quickly estimate the amount of 
completion days within 40% accuracy. The results far 
exceeded the original intention of the program. However, this 
is an ongoing study and there is still much work to be 
performed.  

 
Future Work 

When a large enough amount of post-Macondo wells are 
added, the BOP certification times will be available to be 
included in the statistical time estimate. While the developed 
program has the capability of subtracting times from total 
times, it cannot add times in; these results would be erroneous. 
However, with more data, the sample datasets can be selected 

to only include specific times. 
Additionally, the Prediction Calculator will give more 

consistent results without any data gaps that were discussed in 
the methods section, so there will be no need to take the 
maximum of all the parameters for the time segments 
(Microsoft, 2014). 

In addition to annual updates of the deepwater statistical 
time estimate program, the deepwater drilling statistical time 
estimate needs to be updated. The entire process, with the 
exception of a few variations, will need to be repeated for 
Dodson Datasystems deepwater drilling database. The two 
programs will then be incorporated linked together in order to 
produce accurate well time estimates. With the addition of 
tangible equipment costs, rig rates, and spread rates, the 
program will be able to quickly provide total well costs. 

Eventually, an entire new program will need to be 
developed around the data to apply additional sorting options. 
However, for the time being, this program is effective in 
quickly producing statistical time estimates for deepwater 
completions in the Gulf of Mexico within a 40% accuracy 
range. 
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Nomenclature 
 CRI   = Completions risk index 
 AFE   = Approval for expenditure 
 BOP   = Blow out preventer 
 BP   = British Petroleum 
 DDR   = Daily drilling report 
 ft     = Feet 
 i   = Well number in dataset 
 in   = Inches 
 MD   = Measured depth (feet) 
 µ   = Mean 
 N   = Number of samples in dataset 
 NPT   = Non-productive time 
 Σ   = Standard deviation 
 t   = Time (days) 
 TA   = Temporarily abandon 
 TF   = Trouble free 
 TFT   = Trouble free time 
 WOW   = Wait on weather 
 X   = Well value for particular parameter in 

statistical analysis 
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Tables  

Table 1: Parameters used in Dodson Datasystems CRI 
formula.  

Rig Type Production Casing Size 

Tubing Metallurgy Sand Control Type 
Production Casing 

Type 
Intelligent Completion? 

Completion Type Bottom Hole Temperature > 300°F 

Tree Type Production Casing Squeezed? 

Mechanical Type 
Re-Entry to Temporarily 

Abandoned Well? 
Interval Bottom 

Depth 
Hole Angle at Perforation 

Interval Length Completion Fluid Weight 

 
Table 2: Dodson Datasystems completion time segments. 

Casing Run and Cement Time Install Tree Time 
Pick Up Completion String, 

Displacement, and Filter  Time 
Rig Down and Move Off 

Time 
Perforation Time Well Test Time 

Sand Control Time 
Rig Up Time on Re-Entry 
Well (TA Re-Entry Time) 

Run Tubing Time   
 
 Table 3: Example of interval data as it is exported from 

Dodson Datasystems 

 
 

Table 4: Example of Prediction Calculator results of 
impact values for Interval Number, Interval Bottom Depth, 
Rig Type, and Tree Type. 

  
 
Table 5: Screenshot of well time data with potential 

combinations of time segments subtracted out. 
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Table 6: Prediction calculator impact value results for eight 
possible time combinations. 

 
 
Table 7: Maximum relative impact values for every 

potential parameter. 

 
 

 
 
 
Table 8: Image showing four of the 15 well parameters for 

database wells being summed to give a total well score with 
respect to completion time. 
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Table 9: Example results from running 
program.

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 10: Dark Star time results after running the 
program.
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Table 11: Liberty time results after running the program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12: Terrapin time results after running the program. 

 
 
Table 13: Dark Star, Liberty, and Terrapin results 

compared to normalized AFE days and normalized field days. 
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Figures 

 
Figure 1: Dodson Datasystems CRI plotted against time 

 
Figure 2: Bell curve with median dividing the pair of 
outcomes to show wells with completion properties that 
increase time. 

 

 
Figure 3: Image of input page automatically populating 
prospect well score with respect to time from well 
characteristics. 

 
 
 
 
 

 
 
 
 
 
 

  
 


