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Using the above sensors, the DHOS provides five static 
measurements (downhole WOB, downhole torque, RPM and 
motor RPM, bending moment / bending tool face, annulus and 
bore pressure) and four diagnostics (whirl motion, stick/slip 
motion, bit bounce motion and vibration, i.e., axial, tangential 
and lateral ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 2: DHOS configuration with different sensors 
 

In any well intervention operation such as fishing, the 
surface parameters are insufficient to dictate whether the 
landing string is engaged with the fish before pulling out of 
the hole. To make a definite decision, more precise downhole 
parameters such as DH WOB and DH TORQUE are proved to 
beneficial in eliminating any NPT. 

 
Similarly, in well intervention operations such as milling a 

whipstock’s window, more control on downhole WOB and 
downhole TOB is significant to ensure that the mills are not 
engaged prematurely to avoid exiting the casing earlier than 
planned. Monitoring the downhole WOB and TOB real time 
from the DHOS and controlling parameters on the surface may 
deliver a cleaner window. 

 
Any BHA in a curved wellbore experiences bending loads 

due to side forces. These side forces may be caused by gravity, 
wall contacts or dynamic effects in the curvature of the 
wellbore. Heisig et al1 demonstrated the estimation of 
continuous curvature based on real-time bending moment 
measurements from the DHOS. Also, Hood et al2 
demonstrated how real-time bending information can 
successfully reduce the risk when drilling hard interbedded 
formations with an increased tendency to develop high local 
doglegs at the formation interfaces. In addition, when drilling 
a spiral hole due to formation changes or to the bit’s gauge 
length, this spiral pattern can be easily detected by cyclic 
patterns in bending moments from the DHOS.  

 
This paper specifically emphasizes three downhole 

measurements from the DHOS: bending moments, downhole 
WOB and downhole torque within their applications and 
associated case histories.  

 
Measurements at the DHOS 
 
Bending Loads Measurement 
 

A bending load is also called a bending moment. An object 
can be modeled as shown in the diagram below, and the 
moments along its length can be calculated using the 
formula:     

 
Bending moment = Force x Perpendicular distance  
 
The magnitude of the bending moment varies along the 

length of the object. Thus, the further a section of the object is 
away from the load, the stronger it must be. The DHOS 
measures the bending strain caused by stress using the bending 
strain gauge as follows:  
 
          εbx = (Mbx / EI) y 
 
where: 
 
εbx = Bending strain 
EI = Stiffness 
Y = Lateral distance from the centroid 
Mbx = Bending moments  
 
Downhole Weight on Bit Measurements 
 

Axial force in the BHA is determined by hook load, a 
buoyancy factor, drillstring/BHA weight, borehole geometry, 
mud weight, drag forces and the dynamics effects. The 
downhole WOB strain gauge bridge (Fig. 2) picks up axial 
strain (i.e., change in length within the tool), which is caused 
by axial force (WOB); bending moments, which are 
compensated for by bridge design; pressure effects, which are 
compensated by a pressure compensation procedure; 
temperature effects, which are compensated by a temperature 
compensation procedure; and the temperature gradient across 
the tool wall. Buoyancy (mud weight) and temperature effects 
can also be addressed via downhole tare of the sub. The 
DHOS measures the downhole WOB using the axial strain 
gauge as follows: 
 
εN = (Ny / EA) 
 
where: 
 
εN = Axial strain 
N = Axial force 
Y = Distance from the bit 
E = Young modulus 

Bore pressure gauge
Annular pressure gaugeTOB gauge

WOB gauge

Accelerometers

Magnetometers

Bending gauge

Annular temperature

Communication port

Hard facing band on sleeve section
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A = Cross sectional area 
 
Downhole Torque on Bit Measurements 
 

The torsional moment in the drillstring/BHA is determined 
by downhole torque, which is a function of WOB, bit 
aggressiveness and formation type. Downhole torque due to its 
close position to the bit equates to the bit’s cutting torque and 
thus only measures torque below the tool. The DHOS uses the 
shear strain gauge to estimate the torsional moment or 
downhole torque as follows: 
 
   γ = (Mt/GIp) r 

 
where: 
 
γ  = Shear strain 
Mt  = Torsional moment or torque 
G = Shear modulus 
Ip  = Polar moment of inertia 
R = Distance for the center 

 
Case Histories 
 
Well 1 
 

In Gulf of Mexico (GoM) in water depths of 3200 ft, the 
intent of this operation was to minimize NPT risks associated 
with fishing a gravel pack packer and seals in a deep (21,456 
MD) and highly deviated well (75° inc).  Taking into account 
the light weight fish, extreme depth and deviation of the well, 
and the need for precise control of downhole parameters, it 
was decided to utilize DHOS. The operation used DHOS 
combined with conventional fishing tools to retrieve a gravel 
pack seal assembly (488 lbs) and gravel pack packer assembly 
(5,000 lb).  DHOS was also used in conjunction with a 2⅛-in. 
mud motor to carefully monitor downhole weight on bit, 
torque, and differential pressure while milling up some 
unexpectedly hard fill inside the gravel pack assembly.  
Running the DHOS tool enabled the accurate measurement of 
downhole weight changes, torque, and differential pressure 
that are impossible to see at surface. 

The primary objective for DHOS on this job was to 
monitor weight on bit, reactive torque, and differential 
pressure while running a 2⅛-in. mud motor to clean fill inside 
the gravel pack (Fig. 3).  Because of the extreme depth and 
deviation of this well, and taking into account the sensitivity 
of the mud motor, this operation would not have been 
successful without the ability to precisely monitor downhole 
parameters. Maximum weight on bit for the mud motor was 
only 3,375 lbs, and set down weight could not be seen on 
surface until 50,000 lbs was set down on bottom. 

 
Secondly, DHOS was used to successfully retrieve the seal 

assembly inside the gravel pack packer.  By using the real-
time weight on bit and torque data provided by the DHOS tool 
(Fig. 4), the fishing supervisor was able to successfully screw 
a small acme thread on the retrieving tool into the seal 
assembly at 20,971 feet MD.  After screwing into the seals, 
DHOS was then utilized to jar the seals free by monitoring 
over pull so as not to exceed the limitations of the jars.  After 
the jarring the seals free, DHOS was again utilized to verify 
the light 488 lbs fish weight before pulling out of the hole.    
 

 
Fig. 3: Real time DH parameters during 2 1/8” motor run with 
DHOS 
 

In addition, DHOS was also used to successfully retrieve 
the gravel pack packer assembly.  This operation took 
advantage of the DHOS weight on bit measurements while 
latching into the packer to observe shearing inside the 
retrieving tool that would be difficult to see on surface 
readings alone.  For this operation, the DHOS weight on bit 
readings were of critical importance when jarring on the 
packer became necessary.  Initial jarring attempts at 90k over 
pull on surface (60k DHOS reading on bottom) proved to be 
unsuccessful.  Maximum jarring would be required, but 
surface overpull was getting close to the rig’s maximum 
capability with its current line configuration.  Stringing up the 
block to more lines would have wasted valuable time, but 
DHOS verified that by pulling at the rig’s maximum with 
145k overpull on surface, the jars were seeing their max of 
100k over pull on bottom.  The rig did not have to string up to 
more lines, and the packer came free after only four more hits 
(Fig. 4).  Finally, DHOS verified the packer weight as a 
positive indication of retrieval before pulling out of the hole. 
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 Fig. 4: DHOS verifying the packer weight before POOH 
. 
Well 2 
 

GoM operator using a 4½-in.. CTM-43 work string needed 
real-time data while fishing a bridge plug at ~17,200 ft 
measured depth (MD). The water depth was 1,514 ft and the 
packer depth was at 17,353 ft. After three unsuccessful runs 
the operator decided to have DHOS in the fishing assembly. 
 

During the intervention operations, DHOS – with 14 well 
intervention process sensors simultaneously sampling in a 
dedicated sub – provided real-time data that highlighted a 
weight transfer issue commonly faced during fishing and 
milling operations. DHOS provided readings that were 
converted to provide weight downhole, downhole torque, 
annular and bore pressure, and tensile tension force. 

 
Weight transfer is a common issue with the severity 

varying in each well. In addition, when fishing from a floating 
structure (this job was a floating semi-submersible rig), the 
heave compensators that try to counteract the ocean waves can 
introduce more error into the surface gauges that are supposed 
to measure the forces applied downhole. Downhole readings 
from the DHOS tool showed at times a discrepancy of up to 
7,000 lb of compression force between the surface indicators 
and the DHOS downhole measurements. Surface indications 
fluctuated due to the rigs active compensation, and did not 
reflect the true force being applied to the retrievable bridge 
plug downhole. The fishing assembly included the DHOS 
downhole sensor sub combined with a 3⅛-in. grapple and Itco 
spear. After tagging on packer the average tension was 1,224 
lb due to additional weight and drag due to packer. 

 
It was decided to set down some weight to verify that the 

packer is engaged. DHOS verified the set down weight was 
7,862 lb. After picking for 20 ft another set down weight was 
applied to confirm the packer engagement and was confirmed 
8,331 lb by DHOS (Fig. 5) .After these confirmations of 
packer engagement it was decided to POOH and start planning 
the next operation eliminating NPT. 
 

 
Fig 5: Downhole weight on bit from DHOS confirmed the 
tagging and the set down weights on packer 
 
Well 3 

 
Well intervention is a time- and cost-intensive operation. 

The most important aspect of whipstock operation is milling a 
clean window. The well presented in this case history was 
drilled in deepwater GOM, where the offset sidetrack wells 
had experienced high dogleg severity (DLS) while exiting the 
whipstock windows. These doglegs proved to be hot spots 
and, in several cases, cost the operator additional milling runs 
to obtain a clean window. Previously, the operator tried to 
estimate the DLS by dropping a gyro in the milling assembly 
but never obtained a good estimate of the local dogleg at the 
window. The operator decided to use the DHOS to estimate 
DLS using real-time bending moment data. The main 
objective was to mill a clean window and estimate the local 
DLS to eliminate any extra milling runs. A detailed procedure 
for milling the window was also prepared, including downhole 
parameters such as TOB and WOB. To estimate the DLS from 
bending moment data as demonstrated Heisig et al1, a detailed 
simulation was performed using the service company’s 
software to generate a DLS vs. bending moment chart for that 
particular milling assembly and hole geometry (Fig. 6). While 
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milling the window, close monitoring was conducted for 
downhole WOB and downhole torque to ensure the mills were 
not engaged prematurely and surface parameters were adjusted 
to optimize the window milling. The DLS estimate, based on 
real-time bending moment data from the DHOS, indicated a 
window with a 10.5° DLS compared to a theoretical DLS of 
9.89°. This estimated DLS indicated that no more milling runs 
were required and the mills exited the casing as planned (Fig. 
7). No additional milling runs were performed to dress the 
window, eliminating undesirable NPT. 
 

 
Fig. 6: Estimated DLS severity vs. bending moments for the 
milling assembly 
 
 

 
 
 

. 
 
 
 
 
 
 
 
 
 
 Fig. 7: Conversion of real-time BM in DLS severity over the   
 whipstock window 
 
Well 4 
 

This well was planned to drill the 12¼-in. X 14¾-in. hole 
section using the rotary steerable assembly (RSS) with the 
DHOS and reamer assembly from 8,251 ft MD to 12,664 ft 
MD while building from 3.49º to 98.85º and turning to the 
right from 13.03 º to 31.82 º azimuth. The primary objective 
was to drill through the interbedded hard formations while 

achieving an ROP of 120 to 130 ft/hr and controlling 
vibration. The primary reason to use the DHOS in this hole 
section was to ensure appropriate WOB transfer in the curve 
section and, as this was reamer application, the DHOS was 
placed in the pilot hole just above the steerable unit. While 
drilling this section, a typical cyclic pattern was seen with 
variation of 3Kft-lb every 3 to 5 ft. This distance is equal to 
the distance between the bit and the steering unit, which acts 
as a near-bit stabilizer.  

 
The cyclic pattern disappeared without changing any 

surface parameters. The same pattern was observed again at 
10,662 ft MD, but this time the amplitude varied from 4Kft-lb 
to 5 Kft-lb accompanied with a sudden increase in surface 
torque and stick/slip. To break this spiraling pattern, it was 
decided to pick up the stand and ream through the last stand. 
Tripping back in the hole, it was decided to reduce the WOB 
and increase the RPM to eliminate stick/slip. After these 
procedures, the cyclic pattern disappeared with a reduction in 
surface torque (Fig. 8). 
 

 
Fig. 8: Indicating bending moments cyclic pattern, a sign of 
hole spiraling 
 

After drilling ahead to 11,614 ft, the bending moment 
cyclic pattern appeared again with an increase in surface 
torque and stick/slip severity. These time, bending moment 
values were oscillating heavily from 4 to 8 Kft-lb (Fig. 9). To 
stop this spiraling pattern, it was decided to pick off bottom as 
previously done and ream the last stand. After tripping back 
down, the same adjustments on WOB and RPM were made to 
eliminate stick/slip. This time, to prevent the spiraling pattern 
from occurring, the steering force on the RSS was reduced to a 
level so as to not compromise the directional plan. No 
spiraling pattern resulted while drilling the rest of the hole 
section. The section was TD as planned with an ROP of 130 to 
135 ft/hr without deviation from the plan. The casing was run 
to the target depth without much drag as planned.  
 

CoPilot Bending Moment vs. DLS 
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Fig. 9: Indicating bending moments high cyclic pattern, a sign 
of hole spiraling 
 

To avoid this spiraling pattern in deeper sections and 
future wells, the operator decided on the recommendation to 
use a longer gauge bit with 4 in. of gauge. The DHOS’ real-
time bending moment data helped to identify the hole spiraling 
real time, which enabled the operator to take necessary action 
required to eliminate undesirable events without 
compromising drilling efficiency. 

 
Well 5 
 
The objective of this well was to drill and underream 

vertically from 14,500 ft to the KOP at 16,800 ft, then keep an 
6-degree tangent to 20.500 ft. Stick/slip level was high 
throughout the vertical section and forward whirl was constant 
despite of drilling parameters changes. After the buildup 
section was initiated stick/slip level was greatly reduced and 
so was the whirl level. The section TD was reached, and at 
that point it was believed that the operation was a success. 

 
  With the BHA at surface it was realized that the 

underreamer had no cutting structure left and a caliper log 
confirmed that the hole was under gauge from around 18,200 
ft to bottom.  

 
The traditional and conventional way to detect the reamer 

dysfunction real time is by monitoring the separation in 
SWOB and DHWOB. Apparently, the separation did not 
narrow much to be noticeable due to drilling dynamics, and 
the premature reamer failure was not detected real time, 
costing additional reaming runs for the operator. 
 

To implement a new way to find reamer dysfunction a 
post-well analysis was conducted. After analyzing the DHOS 
memory data it was possible to identify when the reamer lost 
its cutting structure. Based on the Downhole Mechanical 
Specific Energy (DH MSE) and Surface Mechanical Specific 

Energy (S MSE) trend it was apparently cleared where the 
reamer failed. 
 
 

The post-well analysis indicated that at around 17,400 ft 
the difference between the surface and the downhole MSE 
changed with a drastic increase in the surface MSE that 
remained high and erratic until approximately 18,700 ft (Fig. 
10). At the same time there was a slight shift in the difference 
between the surface and downhole torque that became steeper 
up to around 18,750 ft, indicating that the surface torque had 
an increase over the DH torque.  That could have been a clue 
that the reamer was drilling inefficiently and that the cutters 
were damaged and worn out.  
 
 

  
Fig. 10: Differences in MSE’s and torque’s from DHOS  
dictating reamer dysfunction 
 

There was another shift in trends from around 18,700 ft 
until 19,300 ft. The differences in the MSE’s and torques 
showed a decreasing trend, indicating that the surface values 
were getting lower relative to the DH values (Fig. 10). At the 
same time the built-up section had started and forward whirl 
levels decreased and so did the stick slip. From 19,300 ft up to 
the section TD the surface and downhole MSE values were 
closer together and the same happened with WOB and torque 
values. This process of comparing MSE would be 
implemented in any future well with reamer applications to 
monitor reamer dysfunctions. 

Diff in MSE’s increased 

Diff in MSE’s decreased 
steeply 

Diff in torque’s decreased 
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Conclusions 

Today’s downhole technologies are able to provide that 
much needed real-time data to make informed decisions while 
drilling and well intervention operations. Just a small, initial 
investment leads to a value proposition during the course of 
drilling and well intervention operations. 

 
The authors have clearly demonstrated the use and 

importance of downhole optimization sub (DHOS) in drilling 
and well intervention operations. The case studies discussed in 
this paper are proof that having optimization sensors that 
provide information like bending moments, DWOB, etc., are 
essential to answer tough questions and are key tools in the 
benchmarking process. Armed with these tools, even the most 
difficult of wells will have an engineered solution. 

More over the authors emphasized on new methods to 
evaluate reamer dysfunction using the surface and the 
downhole parameters. 
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Nomenclature 
 
BHA = Bottom Hole Assembly 
BM= Bending Moments 
GOM= Gulf of Mexico 
DLS = Dogleg Severity 
KOP = Kick-off Point 
MD = Measured depth 
MWD = Measurement while drilling 
RSS = Rotary-Steerable System 
TD = Total Depth 
WOB= Weight on Bit 
TOB = Torque on Bit 
SS= Stick/Slip 
NPT= Non-Productive time 
ILT= Invisible lost time 
MSE = Mechanical Specific Energy 
DH = Downhole 
S= Surface 
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