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Abstract

Successful pumping of multiple non-Newtonian fluids
through drillpipe and up highly eccentric annuli with
washouts, cuttings beds and fractures, important to cementing
and drilling, is critical to optimal fluid displacement and
pressure control in deepwater horizontal wells. Detailed job
planning is essential, requiring solutions to transient,
multiphase, non-Newtonian flow formulations written to
custom, boundary-conforming, curvilinear grids, providing
high physical resolution in tight annular spaces. Nonlinear
momentum equations with position and species-dependent
rheological properties, which number as many as there are
fluids in the pumping schedule, must be solved quickly to be
useful. Given their mathematical complexity, simplifying
approaches are required. Existing “explicit” finite difference
methods tend to be unstable numerically, and solutions can
require hours-long computing and massive storage. A new
approach taking advantage of the disparate physical scales
underlying typical operational problems, integrating
boundary-layer, self-similarity and asymptotic methods used
in fluid mechanics, is described which solves the general
formulation for transient, multiphase, three-dimensional flow
in seconds. Examples for managed pressure drilling and
cement-spacer-mud displacement are provided, emphasizing
both the user interface and detailed wvelocity, apparent
viscosity, shear rate and viscous stress fields, which
automatically display in color. Analytical validations for
practical applications with reciprocation and rotation are also
presented. The complete transient three-dimensional problem
from mudpump, through the drillpipe and borehole annulus,
and finally to the return surface, is modeled.

Introduction

Non-Newtonian flows in highly eccentric annuli with
cuttings beds, washouts and fractures, encountered in
cementing and managed pressure (and underbalanced) drilling,
are solved without crude slot flow and hydraulic radius
approximations. The nonlinear partial differential equations,
written to customized, boundary-conforming, curvilinear
coordinate grid systems providing high physical resolution in
tight spaces, are solved exactly with no-slip conditions, and
detailed velocity, apparent viscosity, shear rate and viscous
stress fields are computed for pressure drop, hole cleaning and

other applications. For fluids with yield stress, well known
uncertainties related to plug zone size and shape are fully
resolved using Herschel-Bulkley relations applicable across
transition boundaries (determined iteratively as part of the
solution) reaching into and across the plug. Two-dimensional,
single-phase, steady flow simulations, solved rapidly using
finite difference methods, provide detailed numbers and color
displays for all physical quantities within seconds, with
excellent numerical stability for all fluid types with and
without yield stress. Formulations for steady-state casing or
drillpipe longitudinal translation and rotation are presented,
and extensions to model transient incompressible effects
associated with starting, stopping and periodic movement,
important in evaluating cement-mud displacement efficiency,
axial-helical cuttings transport, swab-surge, and jarring
remedies for freeing stuck pipe, are developed. Practical
problems are presented and the advantages over existing
models are described.

In this paper, extensive calculation methods and new
modeling capabilities are presented for job planning and fully
transient, multiphase, three-dimensional, rotating and non-
rotating flow analysis in modern managed pressure drilling
and cement-mud displacement applications.

Background

Annular flow modeling in boreholes, important to both
drilling and cementing, is as old as petroleum engineering
itself.  In the simplest case, flow configurations are
represented by concentric circles through which steady, two-
dimensional, Newtonian and power law fluids flow; in these
limits, exact analytical or numerical solutions of the flow
equations provide useful tools for operational applications.
For more complicated problems, e.g., eccentric annuli, non-
ideal geometric irregularities, non-Newtonian yield stress
fluids, pipe translation and rotation, however, numerous
mathematical obstacles arise, which unfortunately introduce
inefficiencies into field practices. We discuss these problems
next.

Geometric complications. In deviated and horizontal
wells, heavy pipe and drill collar weight implies eccentric
positioning within the borehole, as shown in (a) of Fig. 1,
leading to difficulties in geometric description and solution.
High eccentricities are often accompanied by non-symmetrical
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washouts, thick and irregularly formed cuttings beds, and
possibly, fracture indentations. Early in petroleum
engineering, the notion of a simple “mean hydraulic radius”
permitting representation as an equivalent circular pipe flow,
as depicted in (b) of Fig. 1, was widely employed; this
approach, however, was not useful since what is meant by
“mean” is not obvious and certainly not generally applicable
from one situation to the next. Later “slot flow” models
“unwrapped” the eccentric annulus, with the result as
illustrated in (c) of Fig. 1, and then, further discretized the
resulting slot into local parallel plate elements, each of which
is approximately modeled by simple solutions for fluid flow
between ideal parallel plates. While somewhat reasonable,
this approach applied strictly to very narrow annuli, but even
then, curvature terms in the general governing momentum
equations are always neglected. Thus, inertial effects are
never properly modeled even in the limit of very narrow
elements.
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Fig. 1 — Idealizations commonly used to represent eccentric
borehole annuli.

Improvements to slot flow models are provided by “pie
slice” formulations, idealized in (d) of Fig. 1, in which
eccentric annuli are represented by “pie slices” of varying size
and included angle having the pipe center as a virtual origin.
The solution for each slice is taken from the numerical
solution for a concentric annular problem with a closely
matched radius. In this approach, pie slices ranging from
small to large are used. However, it is clear from the sketch
that perfect geometric matching of the borehole boundary is
never completely achieved, so that adequate modeling of
curvature effects is approximate at best. Moreover, the
concentric solutions used are numerical in the case of yield
stress fluids and awkward in implementation. More recently,
authors have used “bipolar coordinates” to represent eccentric
circles, and while these provide useful host formulations for
zero-yield-stress fluids, the algebra required to represent even
the simplest non-Newtonian flow problems is overwhelming
compared to the methods introduced later. The mapping
method used in the present paper, it turns out, provides
superior modeling capabilities in that the complete momentum
equation for any rheology and annular geometry can be solved
exactly. The new approach is less intensive numerically and
easily describes realistic cuttings beds, washouts and fracture
indentations.

Geometric difficulties, however, are much more than
what meets the eye. When yield stress fluids flow, “plug
regimes” that move as solid bodies are always present in flow

domains below a given yield stress. When slot flow or pie
slice models are used to simplify the solution process, “plug
rings” are always obtained by virtue of the adhoc recipes
described above.  This is physically incorrect in most
operational situations characterized by high eccentricity. For
example, one would expect a large, isolated, almost circular
plug element at the wide side of (a) of Fig. 1 and perhaps in a
narrow strip at the bottom, but a flow containing such a solid
plug would be ruled out by both solution methods. Until
recently, of course, exact solutions for (a) of Fig. 1 with yield
stress fluids, e.g., Bingham plastics and Herschel-Bulkley
models, were impossible anyway for one important reason —
theoretically, the size and shape of the plug zone are unknown
in problems without azimuthal symmetry, and without
knowledge of these internal boundary properties, a complete
flow solution could not be obtained. This paper addresses and
solves this problem in its complete generality.

Mathematical difficulties. Ideally, one would represent
the details of highly eccentric annular domains exactly and in
their entirety using boundary-conforming, curvilinear meshes,
to which the governing equations of motion would be written,
solved, and post-processed for relevant engineering
information. However, this is often numerically difficult
because there are as many distinct partial differential equation
formulations as there are fluid rheologies, e.g., the equations
for Newtonian, power law, Bingham plastic and Herschel-
Bulkley fluids are very different, each with its own
convergence, stability and physical properties.  Moreover,
because the equations are generally nonlinear, solutions must
be obtained by iterative means. In fact, iterative solutions
solving complicated grid generation equations must be
followed by iterative solutions to produce the required
flowfields on the resulting meshes. These difficulties are
compounded, typically, by user inexperience in computational
grid generation and numerical analysis. Even when solutions
to underlying velocity fields are available, post-processed field
solutions for shear rate, viscous stress, apparent viscosity, and
so on, need to be automated and rapidly displayed in order to
be useful in real-time applications. This requirement is
particularly relevant in ultra-deepwater applications since fast
and accurate pressure solutions are required to navigate the
narrow window between formation fracture and disastrous
blowout. These problems are all addressed in the software
development program.

User interface considerations. Assuming that both
geometric and mathematical issues can be addressed
satisfactorily, human factors issues relating to software usage
become all-important especially in anticipated applications to
managed pressure drilling in ultra-deepwater drilling and hole-
cleaning at high deviation angles. Physical formulations must
be mathematically rigorous, numerical solutions must be
detailed and pertinent to the annular geometry at hand, and
complete field solutions for all engineering properties must be
achievable in a manner that is completely transparent to
typical engineering users with undergraduate degrees — and,
even better, to field technicians with minimal modeling
experience or mathematical training. This requires fully
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automatic grid generation, nonlinear equation setup and stable
matrix inversion.

The wuser interface must be designed with rigsite
workflows in mind. Importantly, accuracy and speed, that is,
“desktop speed” from problem definition to automated color
displays, go hand-in-hand, because of demands imposed by
narrow margins between pore-pressure and fracture-pressure
gradient profiles in modern offshore applications. All of the
above considerations, again, accurate geometric modeling,
rigorous mathematical formulation and solution, and fast,
user-friendly, graphically-oriented software implementation,
render the general annular flow modeling problem extremely
challenging. We now address each of the foregoing issues and
explain how the solutions satisfactorily address these needs.

Exact Geometric and Mathematical Formulation

Boundary-conforming, curvilinear meshes. Coordinate
systems “natural” to engineering problems play vital roles in
facilitating efficient and accurate computational solutions. For
example, circular coordinates are natural to circular wells
producing from infinite reservoirs, while rectangular systems
are ideal for problems solving, say, temperature distributions
on rectangular plates. By the same token, a mesh system
suitable for eccentric annular geometries would have inside
coordinate lines that coincide with circular or square drill
collars with stabilizers, while outside lines would conform to
irregular borehole walls with their cuttings beds, washouts and
fracture indentations. A second set of coordinate lines might
be constructed orthogonally to the first, although this is not
necessary if all terms in the resulting transformed governing
equations are retained. By contrast, it is clear that rectangular
(x,y) or circular (r,0) coordinates are less than satisfactory for
accurate geometric description of general annuli.

In natural “boundary-conforming, curvilinear
coordinates,” here denoted by (&m), boundary conditions
would be easily specified. For example, the no-slip velocity
condition for stationary surfaces, say, at pipe and borehole
surfaces, is simply described by “u = 0” along horizontal grid
lines & = &pige and & = Eporenole Where the subscripted numbers
are constants. By contrast, the formulation in rectangular
coordinates would require u = 0 applied along cumbersome
curves, e.g., u{x,f(x)} = 0 where y = f(x) represents internal
and external contours.

The objective behind grid generation is a set of
transformations &(x,y) and n(x,y) that enable simple boundary
condition implementation, so that a complicated physical
region, here the eccentric borehole annulus, becomes a simple
rectangular one in a computational domain, where the solution
of the mathematical problem is undertaken. Once the
mapping transforms are available, the governing equation
itself must be expressed in the new coordinates. For example,
the partial differential equation for steady-state, two-
dimensional, Newtonian fluid flow is the well known uy + Uy,
= - u?t oP/oz where p and OP/oz represent viscosity and
applied pressure gradient. Although this appears in rectangular
coordinates, the equation applies to all annular geometries.

The conversion process itself is straightforward.
Suppose we wish to express a function u(x,y) in terms of
convenient independent variables & and . If the
transformations x = x(§,m) and y = y(&,n) are available, direct
substitution allows us to rewrite u(x,y) in the form u(x,y) =
U(&,m), where the functional relation U(E,n) between & and
n is generally different from the relation u(x,y) connecting x
and y. Derivatives of u(x,y) with respect to x and y are easily
related to derivatives of U(€,n) taken with respect to & and n.
For example, it is easily shown that Ug = uyx: + uy y:and U, =
UxXy + Uy Yy, for the first derivatives, with obvious extensions
to second derivatives obtained using the chain rule of calculus.
In general fluid-dynamical problems, the resulting equation
for U(&,n) is typically more complicated than that for u(x,y).
The computational benefit, however, is accurate and noise-free
implementation of boundary conditions, not to mention the use
of much fewer grid points for the same level of physical
resolution. Calculated solutions are displayed in physical
space with the assistance of custom color plotting routines.

Many commercial simulators calculate velocities and
other flow properties directly using rectangular (x,y) grids.
We emphasize that x-y coordinate lines do not conform to the
irregular curves defining near and farfield boundaries; also,
high grid densities imposed, say at the bottom of an eccentric
annulus, would require similarly high densities far away where
detailed resolution is unnecessary. This results in large,
inefficient computing domains containing dead flow and
extremely large matrices. In addition, “choppy” meshes lead
to noise, inaccuracy and instability.  Other simulators,
particularly general purpose codes used in computational fluid
dynamics (CFD), do support automatic and efficient “finite
element” or “finite volume” gridding. However, they are not
portable in the sense that special licenses must be purchased
for users, thus incurring significant costs.  But more
importantly, they run proprietary, high-overhead “canned”
routines that cannot be adapted to new mathematical models
(such as the novel yield stress formulation introduced below)
and cannot be “tuned” to run optimally. Also, they offer
inflexible output formats that are not easily integrated with
custom designed graphics and user interface software. In this
paper, the objective is a fast, flexible and accurate solution
procedure that can be installed on all operating systems at
minimal cost.

We conceptually describe the grid generation process in
this paper. Details are offered in the principal author’s books
on drilling and reservoir engineering, e.g., see Chin (1992,
2001, 2002). We reiterate the basic ideas here because they
are essential to understanding the solution approach and its
topological advantages. Rather than dealing directly with & =
E(x,y) and n = n(x,y), we equivalently consider the inverse
functions x = x(&§m) and y = y(§n) satisfying nonlinear
coupled partial differential equations, which are derived in the
form

(nZ +¥n?) Xez -2 (XX +Yeyn) Xen + 062 +¥E2) X =0 (1)
(0% +Yn?) Vee -2 (kX + Ye¥n) Yen *+ &%+ Yed) Y =0 ()
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where & and n are now independent (as opposed to dependent)
variables. We aim to map the irregular flow domain of Fig. 2a
into the simple rectangular computational domain of Fig. 2b
where B; and B, are physically insignificant “branch cuts”
where single-valued solution constraints are enforced.

Fig. 2a — Irregular physical domain with inefficient rectangular
meshes.

Fig. 2b — Irregular domain mapped to rectangular computational
space.

Fig. 2c — Physical domain in boundary-conforming coordinates.

How are the foregoing equations used to create
numerical mappings? Suppose that contour Cy, in Fig. 2a is to
map into n = 0 of Fig. 2b. The user first discretizes Cy in Fig.
2a by penciling along it a sequence of dots chosen to represent
the curve. If these are selected in an orderly, say, clockwise
fashion, they define the direction in which & increases. Along
n = 0, values of x and y are known (e.g., from measurement
on graph paper) as functions of . Similarly, x and y values
along C, are known as functions of & on n = 1 of Fig. 2b.
These provide the boundary conditions for Egs. 1 and 2, which
are augmented by single-valuedness constraints at arbitrarily
chosen branch cuts B; and B,. It is clear that this process is
easily automated by computer.

Conventionally, in grid generation, Egs. 1 and 2 are
discretized by finite differences and solved by point or line
relaxation, starting with guesses for the dependent variables x

and y. The problem is linearized by approximating all
nonlinear coefficients using values from earlier iterations.
Typically, several updates to Eq. 1 are taken, followed by
updates to Eq. 2, with this cycling process, often unstable,
repeated continuously until convergence. Variations of the
approach are known, with 100 x 100 mesh systems in the &-n
plane requiring minutes of computing time. Once x = x(&,1)
and y = y(&,n) are solved and tabulated as functions of & and
n, physical coordinates are generated. First, n is fixed; for
each node & along this n, computed values of (x,y) pairs are
successively plotted in the x-y plane to produce the required
closed contour. This procedure is repeated for all values of 1,
until the entire family of closed curves is obtained, with limit
values 1 = 0 and n= 1 again describing C, and C.
Orthogonals are constructed by repeating the procedure, with
n and & roles reversed.

This process provides the curvilinear mapping only. The
equation describing the physics (e.g., the Navier-Stokes
equation for Newtonian flow or the general rheological
equations for non-Newtonian fluids) must be transformed into
(&,m) coordinates and solved. In general, the transformed
governing equation, which is algebraically more complicated,
must be solved, and this procedure introduces its own
complications and  numerical  challenges. The
“simplification,” however, lies not in the transformed
equation, which now contains mixed derivatives and variable
coefficients, but in the computational domain itself, because
this domain takes on a rectangular form amenable to simple,
noise-free numerical solution, requiring significantly fewer
nodal points for high resolution physical definition.

Again, existing solution methods solving x(¢m) and
y(&,m) stagger the solutions for Egs. 1 and 2. For example,
crude solutions are used to initialize the coefficients of Eq. 1,
and improvements to x(§,n) are obtained. These are used to
evaluate the coefficients of Eq. 2, in order to obtain an
improved y(&,m); then, attention turns to Eqg. 1 again, and so
on, until convergence is achieved. Various over-relaxation
means are used to implement these iterations, e.g., point SOR,
line SLOR, line SOR with explicit damping, alternating-
direction-implicit, and multigrid, with varying degrees of
success. Often these schemes diverge computationally. In
any event, the staggering used introduces different artificial
time levels while iterating. Classic numerical analysis,
however, suggests that faster convergence and improved
stability are possible by reducing the number of time levels.

A new approach to rapidly solve the nonlinear coupled
grid generation equations was proposed by the principal
author a decade ago and is based on a very simple idea. This
idea has since been validated in numerous applications.
Consider first z§%+ Zyyn = 0, for which zj ; ~ (zj.1 j + Zj41 j +
Zij1t Zi,j+1)/ olds on constant grid systems (thls is easily
derived using standard finite difference formulas). This well-
known averaging law motivates the recursion formula zi,-” =
(Zi_]_’jn'l + Zj41 -1y Zi,j_ln'l + ZiJ+1n'1)/4 often used to
illustrate and develop multilevel Iterative solutions; an
approximate, and even trivial solution, can be used to initialize



AADE-11-NTCE-72

Transient, Multiphase, Three-Dimensional Pumping Models for Cementing and Drilling 5

the calculations, and nonzero solutions are always produced
from nonzero boundary conditions.

But the well-known Gauss-Seidel method is fastest: as
soon as a new value of zj j is calculated, its previous value is
discarded and overwritten by the new value. This speed is
accompanied by low memory requirements, since there is no
need to store both n and n-1 level solutions: only a single
array, zj j itself, is required in programming. The approach to
Egs. 1 and 2 was motivated by the following idea. Rather than
solving for x(&,m) and y(&,m) in a staggered, leap-frog manner,
is it possible to simultaneously update x and y in a similar
once-only manner?  Are convergence rates significantly
increased? What formalism permits us to solve in Gauss-
Seidel fashion? What are the programming implications?

Complex variables are used often in harmonic analysis
problems; for example, the real and imaginary parts of an
analytical function f(z), where z = x + iy, provide solutions
satisfying Laplace’s equation. Here we use complex analysis
differently. We define a dependent variable z by z(&n) =
x(&m) + i y(€m), and then add Eq. 1 plus i times Eq. 2, in
order to obtain the net result (x 2 4 yn) Zgg - 2 (xix
Yeyn ) Zgy * (Xi + yi) Zym : 0. Now, the complex
conjugate of zisz g; M) = x(En) - 1 y(E, 112 from which we
findthat x =(z+z )2 andy =-1i (z - 2")/2. Substitution
produces the simple and equivalent one-equation result

(22 ) 22e - (x 2q +25720) 2eq + (22 28) 20y =0 )

This form yields significant advantages. First, when z is
declared as a complex variable in a Fortran program, Eq. 3
represents, for all practical purposes, a single equation in
z(€m). There is no need to leap-frog between x and y
solutions now, since a single formula analogous to the
classical model zj; = (zj-1j + Zj+1j *+ Zjj-1 * Zjj+1)/4 is
easily written for %he Zjj using Eq. 3 as tf|1e host equatlon
Because both x and y are simultaneously resident in computer
memory, the extra time level present in staggered schemes is
completely eliminated, as in the Gauss-Seidel method. In
thousands of test simulations conducted using point and line
relaxation, convergence times are shorter by orders of
magnitude relative to those obtained for cyclic solution
between x(&,m) and y(§m). Convergence appears to be
unconditional, monotonic and stable. Because Eq. 3 is
nonlinear, von Neumann tests for exponential stability and
traditional estimates for convergence rate do not apply, but the
evidence for stability and convergence, while empirical,
remains very strong and convincing since we have always
computed useful grids in all test runs.

Iterative solution of nonlinear partial differential
equations. Earlier we noted that uy + Uy, = - w? oP/oz applies
to steady, two-dimensional, single-phase Newtonian flows for
borehole annuli having the most complicated shapes;
unfortunately, practical solutions cannot be accurately
obtained in (X,y) coordinates. Here, p is a constant viscosity
and oP/oz is the applied pressure gradient in the z direction
assumed to be known. This is the so-called Poisson equation
in mathematics, and students who have undertaken its study

realize that, despite the apparent simplicity offered by few
terms and complete linearity, useful solutions to the classical
model are nonetheless difficult to obtain.  When the
underlying fluid is nonlinear, this equation is replaced by Eq.
4, which is vastly more complicated, that is,

0 (N ouloy)! oy + 0 (N oulox) ox = oPloz 4

where N now represents the “apparent viscosity” function.
This apparent viscosity is not constant, but a function of local
shear rates whose mathematical form depends on the
particular rheology assumed. For example, in the case of
power law fluids modeled by an exponent “n” and a
consistency factor “K,” N takes the form N = K [ (au/ay)2 +
@u/ox)2 1(-1)/2 Even without solving the problem, it is
clear that, since du/ox and ou/oy depend on the (unknown)
solution itself, any resulting apparent viscosity must vary
locally within the flow domain and depend on both geometric
details and flow rate. Detailed computed solutions for annular
flows are presented in Chin (1992, 2001) where approximate
approaches to plug flow modeling are used.

Because Eqg. 4 is now strongly nonlinear, the solution
process at its very heart must remain nonlinear. This implies
that one cannot use simpler Newtonian solutions as leading
approximations and focus on higher order improvements to
them. The basic solution method must retain a fully nonlinear
character in order that well known nonlinear relationships
between pressure gradient and volume flow rate evolve as part
of an iterative computational process. As if this alone were
not complicated enough, we emphasize that it is the re-
expression of Eq. 4 in general (§,m) curvilinear coordinates,
not in simple (x,y) coordinates, that must be solved, and that
these coordinates and their metrics are only available
numerically.

The transformed equation now contains additional terms
as well as nonlinear coefficients that depend on the mapping.
Direct solutions are not numerically possible, but exact
solutions can be obtained iteratively. In fact, finite difference
methods are used; the solutions are obtained line-by-line using
so-called “successive line over relaxation” (SLOR) schemes
written in the curvilinear coordinates.  These iterative
solutions are initialized by “close” analytical or numerical
solutions; the closer the initial guess, the more rapid the
convergence. For typical problems, the efficient schemes
devised will produce a usable curvilinear grid in
approximately one second of computing time, while the
solution of the transformed momentum equation (when
pressure gradient is specified) may require two-to-three
seconds. Again, detailed discussions and computed solutions
for power law and simple plug flows in highly eccentric
annuli, with practical applications, are given in Chin (1992,
2001). The approximate plug flow methods developed in
these early researches are now obsolete and are replaced by
the following exact approach for yield stress description and
modeling.

Yield stress, plug zone size and shape modeling. In
fluid flows where yield stresses exist, “plug zones” are to be
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found. These plugs move as solid bodies within the flowing
system.  For pipes with circular cross-sections and for
concentric annuli, it is possible to derive exact analytical
solutions for plug zone size and shape for Bingham plastics
(general solutions have, in fact, been derived for both
geometries assuming Herschel-Bulkley fluids, and will be
presented separately). For circular pipes, the cross-sectional
plug is simply a circle; for concentric annuli, of course, the
plug is a concentric ring.

The appearance of solid plugs within moving streams
results from the rheological model used by mathematicians to
idealize the physics. If we denote the shear rate functional by
T = [ (8uldy)? + (ulox)2 1L/2, this idealization can be written
formally as

N =KL+ Sy;61g/T if {1/2 trace (Se)H/2 > 1
D =0 if {1/2 trace (SeS)}/2 <1, (5)

where the general extra stress tensor is denoted by S and the
deformation tensor is given by D. Here, 1, is the so-called
“yield stress.” The discontinuous “if, then” character behind
Eq. 5 is responsible for the sudden transition from shear flow
to plug flow commonly quoted. As noted, for flows with
azimuthal symmetry, that is, circular pipes and concentric
annuli, exact, rigorous mathematical solutions are in fact
possible.

For non-circular ducts and eccentric annuli, which
describe a large number of practical engineering problems, it
has not been possible to characterize plug zone size and shape,
even approximately. Thus, the most significant petroleum
engineering flow problems important to both drilling and
cementing cannot be modeled at all, let alone accurately. In
order to remedy this situation, we observe that the
discontinuity offered in Eq. 5 is really an artificial one,
introduced for, of all reasons, “simplicity.” This unfortunately
leads to the solution difficulties noted. In reality, practical
engineering flows do not suddenly turn from shear to plug
flow; the transition may be rapid, but it will occur
continuously over finite measurable distances. We therefore
turn to more realistic rheological models which apply
continuously throughout the entire problem domain, and
which, if the underlying flow parameters permit, lead to plug
zones naturally during the solution process.

The conventional Herschel-Bulkley viscoplastic model,
which includes Bingham plastics as a special limit when the
exponent “n” is unity, requires that © = to + K(dy/dt) ", if t > 1
and dy/dt = 0 otherwise. Here t is the shear stress, 1o is the
yield stress, K is the consistency factor, n is the exponent, and
dy/dt is the shear rate. As explained, this model is far from
perfect. For example, both Herschel-Bulkley and Bingham
plastic models predict infinite viscosities in the limit of
vanishing shear rate, a fact that often leads to numerical
instabilities. In addition, the behavior is not compatible with
conservation laws that govern many complex flows.

o . mn . R LJOT o N TR SO SO LI
= 10 0 T 10t 0 0t 10¢ oo w 1w
7

Fig. 3 — Extended Herschel-Bulkley law.

An alternative to the standard Herschel-Bulkley model is
the use of continuous functions which apply to sheared
regimes, and in addition, through and into the plug zone. One
such example model is suggested by Souza, Mendez and
Dutra (2004), that is, T = {1 — exp(-no dy/dt /tg)Hto + K
(dy/dt) "}, which would apply everywhere in the problem
domain.  The corresponding apparent viscosity N, for
numerical implementation in Eq. 4, is denoted by

n =t /(dy /dt)
= {1 — exp(-no dy/dt /to) Hro/(dy/dt) + K (dy/dt) "'} (6)

The “apparent viscosity vs shear stress” and “shear stress vs
shear rate” diagrams, from Souza et al, are duplicated in Fig.
3. What are the physical consequences of this model? Eq. 6,
in fact, represents an “extended Herschel-Bulkley” model in
the following sense. For infinite shear rates, one would
recover T = 1o + K (dy/dt) ". But for low shear rates, a simple
Taylor expansion leads to n =~ {no(dy/dt) /to}{to/(dy/dt) + K
(dy/dt) "} = 1o where it is clear now that 1, represents a very
high viscosity for the plug zone. The use of Eg. 6 in
numerical algorithms simplifies both formulation and coding
since internal boundaries and plug domains do not need to be
determined as part of the solution. A single constitutive law
(as opposed to the use of two relationships in Eq. 5) applies
everywhere, thus simplifying computational logic; moreover,
the continuous function assumed also possesses continuous
derivatives everywhere and allows the use of standard
difference formulas. Cumbersome numerical matching across
internal boundaries is completely avoided. In a practical
computer program, the plug zone viscosity might be assumed,
for example, as 1,000 cp. In fact, we choose high values of ng
which would additionally stabilize the numerical integration
schemes used. This strategy is applied throughout this work,
both to the iterative relaxation schemes for steady-state
problems and to the transient integration schemes for more
complicated formulations.  This new approach was first
discussed in Chin and Zhuang (2010) for steady flows and has
since been incorporated in the fully transient annular flow
modeling approaches.

Borehole axis radius of curvature. Borehole axis
curvature is important to ultra-deepwater drilling, especially in
short and medium radius turning applications. Several aspects
of cuttings transport and debris removal are not completely
understood insofar as centrifugal effects are concerned and a



AADE-11-NTCE-72

Transient, Multiphase, Three-Dimensional Pumping Models for Cementing and Drilling 7

study of curvature effects contributes to an understanding of
their influence on stress fields. Also, bends in pipelines and
annuli are interesting because they are associated with losses;
that is, to maintain a prescribed volume flow rate, a greater
pressure drop is required in pipes with bends than those
without. This is true because the viscous stresses acting along
pipe walls are higher. The modeling of borehole axis
curvature effects for problems involving noncircular ducts and
highly eccentric annuli containing non-Newtonian fluids was
first addressed in Chin (2001), where detailed derivations,
equations and computed examples are given. Essentially, it is
shown how, by replacing “1/u 0P/oz” with an inertially
corrected “1/u  dP/éz - 1/R dulor + u/R?* where R is the
radius of curvature, the effective pressure gradient accounting
for centrifugal effects is properly and stably modeled. This
model is incorporated into Eq. 4 and a radius of curvature
entry appears in the software menu in Fig. 4a at the bottom
left.

Single-Phase Steady and Transient Formulations:
User Interface and Physical Modeling Capabilities

Simulators for two-dimensional steady and transient flow
are described in this paper, applicable to single-phase,
Herschel-Bulkley fluids, which may also be operated in
Newtonian, power law and Bingham plastic modes. For
Bingham plastic and Herschel-Bulkley fluids, the generalized
rheological approach is used and plug zone sizes and shapes
are determined automatically whatever the eccentric annular
geometry. The intuitive user interface shown in Fig. 4a
requires only an elementary understanding of engineering
vocabulary and the simulator may be operated with minimal
training. Annular geometry is defined by entering center
coordinates and radii in the upper left menu. Clicking ‘Show
Annulus’ provides an instantaneous display of the geometry
assumed, plus a typical curvilinear grid, e.g., as illustrated in
Fig. 4b, whose mesh density may be coarsened or refined at
run-time. In addition, online editing utilities allow the
baseline eccentric circles to be edited for washout, cuttings
bed or fracture modification effects.

= MPD Flow Simulator [Steady 2D] E
Start  Resultz  Utlities  About
— Annular B try “H hel-Bulkley Fluid
Pipe or casing [in] Coordinate System Dimensionless n
Center, y [0 Ellbofnsistgn;:y h_ac:tor K 0.0000568
Centerx [0 | (e T ]
) *rield stress [psi] D
Aodes §_] x
Borehole [in] — Specify —————————————————
Certer Urits: psift
Center, » D v * Axial pressure gradient
) " Woalume flow rate
Fiadius :
Curvature Create circles first ... you may Control Panel
T edit curves at runtime. 0
hole as [f) Show Annulus I Simulate |
Fipe, casing Eccentricity & o
speed [inds) D v M QuikSirn | Esit |

Fig. 4a — Steady flow user interface.
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Specily
Upits psit [ 00M |
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Control Panel
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Qi S Ext
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Fig. 4b — Quick annular geometry and curvilinear grid display
mode.

Rheological parameters for the general Herschel-Bulkley
fluid are entered into the input boxes at the upper right of Fig.
4a. Four model are possible by choosing the values of n, K
and 1, appropriately. Newtonian fluids require n = 1 and 1o =
0, while power law fluids allow general n with vanishing <.
On the other hand, Bingham plastics require n = 1 and non-
vanishing 1o, while all three parameters may be generally
assumed in the case of Herschel-Bulkley fluids. Fig. 4c also
shows two utilities for n and K determination in the case of
power law fluids, that is, assuming Fann dial readings or
viscosity and shear rate data are available.

= MPD Flow Simulator (Steady x|
Start  Results | Lkilities  About

Calculator

 Annular G
Pipe or cas___Concentric steady flow

Center, y Find power law n,K using ... Fann dial readings
i 1465
Influs foutflus) ... total pressure drop # Wiscosity and shear rate
. Physical constants it st ) 0
Fiadiuz Pressure gradient vs flow rate curve  #
Stratified Flow (barite sag)

Herschel-Bulkley Fluid
4 r 1

Flirmamsimmnlans " na

Center, &

Borehole (il — (steady) — Specify —————————
wab-surge (steady
Certer, y Unis: psidit -0.001
Center, & LORFT I
EI \—'i_/.\’ * Ayial preszure gradient
) = Wolume flow rate
R adius
Create circles first ... you may
Curvature: i : — Control Panel ————————————
o edit curves at runtime.
hale axis (ft) : Simulate I
Fipe, casing Eccentricity e o !
speed finds] EI Y l:l QuikSim | Exit |
x| x|
Fann dial FPH Centipoize [cp] Fecp sec
13t reading EI 13t reading |1 | |1|] |
2rd reading 2nd reading |1 | |1|]|] |
Find ] Esit | Find ] Exit |
n, dimensionless B75734 n, dimensionless I:I
K. Ibf sec”nizg in 00002833119 K. Ibf sec™ndsq in 0000001 46528

Fig. 4c — Determining n and K for power law fluids.

It is clear from Figs. 4a — 4c that several important
auxiliary capabilities have been built into the overall
algorithm. First, the axis of the borehole need not be straight;
it may be curved, with any constant value for radius of
curvature, to model short, medium and large radius turning of
the borehole in offshore applications. This properly accounts
for centrifugal effects which will affect the relationship
between pressure gradient and volume flow rate.
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Second, the drillpipe may move in either direction
relative to the borehole, that is, constant speed translational
motion is permitted. In the simplest application, the drillstring
penetrates the formation, moves relative to the borehole at
constant positive or negative speed, and induces a purely two-
dimensional flow everywhere; the value of this speed is
entered into the bottom left input box of Fig. 4a. This
capability also supports steady-state swab-surge analysis, with
the mudpumps turned off or on and continuously running, as
will be illustrated in examples later. A simple “Worksheet’ is
loaded by clicking ‘Swab-surge (steady)’ in Fig. 4c, which
prompts the user for tripping mode and speed. The positive or
negative induced volume flow rate is calculated and added to
the flow rate specified at the mud pump. Two calculation
modes described in the next paragraph was developed for
swab-surge and other drilling and cementing applications.

The option boxes immediately above the ‘Control Panel’
in Fig. 4a show how two computational modes are supported.
In the first, the applied axial pressure gradient is specified and
volume flow rate (together with detailed field solutions for all
physical properties) is calculated. In the second, volume flow
rate is specified and pressure gradient (together with all field
properties again) is determined iteratively. The algorithm
involves some subtlety because, as will be described in the
application for swab-surge, the directions for drillpipe motion
and net volume flow rate need not be correlated. For the
“flow rate specified” mode, an initial pressure gradient is
assumed for which a test rate is calculated and compared
against the target rate; if the results do not satisfy a tolerance
of 1%, a half-step correction procedure is applied to the test
gradient and the calculations are repeated to convergence.
Typically, the “pressure gradient specified” mode requires 2-3
seconds or less for a complete solution, while the “flow rate
specified” mode may require up to ten seconds.

= MPD Flow Simulator [Transient 2D) ]
Start  Fesults  Utiities  About

~ Annular G Tutorial Examples

Fipe or casing [l Barehole (in) Ex_Ta [Con, Hw, Ax).run =
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- applcations programs.
Show Giid Conveniion ¥
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Surface Ang (ded) D Hydastatic |:| Con = Concentiic, Ecc = Eccentric; Nw = Newtonian, PL = Power

pressure ssuire law, BP = Bingham plastic, HE = Herschel-Bulkley: Ax = Avial and

pre!
[p=il Length [ft] |30000]  fpsi) Update Rt = Rotating pipe or casing

 Herschel-Bulkley Fluid ~ Engineering Yariables

—— Upipe (asial speed) = A + Bt + C sin (25 Freqt + phase) ... insec (B, infsec’2)
i
K[ Ibf secn/sq in) [.000D0D1 465 af0Jef Jcp JrearaP ] eaera@ ] 2

APM =& + Bt + C sin (Z5piFreat + phase] .. . rev/min [B. rpmésec)

Vield stress [psi) [ .0000

a0 80 ] c@ | Feamall | prerea0 ] 2]
Speic v
esllE ey Pressurs gradismt = A + Bt + C sin (2pi*Freq + phase) .. psifft (B, psi/ft/sec)

P o o o Y

~ Simulation Parameters

Timestep (el [001 || Control Panel

Mumber, st Initialize flovi to . . .

ke seps - |20000 il faw b Create Flow_| Upipe vt | Summary |
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between displays Display aptions Help | dp/dzvst | U welocity |
Time: between l:l

tabulations (sec) [ Interactive plots Exit | GPM st | W velocity |

Show piofiles @ m Movie frames only

Access resuls for previous (latest) un

Fig. 4d — Transient flow user interface.

The foregoing remarks, focusing on the screen shot in
Fig. 4a, apply to the steady flow simulator. The corresponding
user interface for transient incompressible flow is shown in
Fig. 4d. Now, instead of Eq. 4, fully unsteady effects are
computed from its transient extension, but rewritten in custom
curvilinear coordinates applicable to the particular geometry
under consideration. The above menu contains similar
geometry and rheology definition modules, however, general,
coupled, transient functions for pipe or casing axial
reciprocation, inner circle rotation and pressure gradient are
permitted. Additional input boxes for time step selection to
facilitate numerical time integration are shown. Importantly, a
database of prior runs is offered for user convenience and
education. Clicking on a named entry at the top right of Fig.
4d automatically fills in all relevant input boxes and launches
any sub-applications programs that are required. Users may
edit numerical values and re-run any simulations available in
the database. Also, all graphical capabilities described in this
paper for steady flow are also available for unsteady flows.

Color displays of engineering properties. In order to
make the mathematical models useful, every effort was
expended to automate the display of important field quantities
using two and three-dimensional color graphics. Use of the
presentation tools is completely transparent to the engineer.
An ‘Install Graphics’ button installs all required software
quickly in a single pass; in addition, user training in operating
the integrated graphical capabilities is not required. On
convergence of the solution, a message box (supplemented
with speech output and suggestions) summarizes basic
pressure gradient and flow rate relationships.

The menu in Fig. 5a indicates that text output and color
displays for different physical quantities are available for
display. These quantities are post-processed from the velocity
solution and made available for important engineering
reasons. For example, Chin (1992, 2001) shows that apparent
viscosity is vital to evaluating spotting fluid effectiveness in
freeing stuck pipe. On the other hand, viscous stress (at the
cuttings bed) is important to studying hole cleaning in
horizontal and deviated wells, while velocity and viscosity
play dominant roles in vertical well cuttings transport. A
complete discussion, together with validations from a number
of experimental investigations, is offered in the the books by
Chin (1992, 2001).

= MPD Flow Simulator {Steady
Start | Resulks  Utiities  About

— A Duverview ~Heischel-Bulkley Fluid
Pip Tet output Coordinate Systern Dimenzionless n

Color plots  » (GRS Cansistency tactor K [g ppop7465
] X

Ix

|| | ihtsretnsni
Center, e
G o e T
Radius 3 Static 30
|: Apparent viscosity Nz, ) Dynamic 30
Borehole [in] Shear rate dujdx t
Center.y [-2 Shear rate dufdy Units: psifft

Center, & [p Viscous stress, M dUfdx
Viscous stress, W dUfdy

Radius |6 Dissipation Function

% fuial pressure gradisnt
£ Yolume flow rate

Curvature, Stokes product, MU — Control Panel ——————————
hole axis (] {1000 5 Simulate
Pipe, casing Eccentricity & =

speed [in/s] D ¥ l:l GuikSim | Exit |

Fig. 5a — Graphical solution display options.



AADE-11-NTCE-72

Transient, Multiphase, Three-Dimensional Pumping Models for Cementing and Drilling 9

Fig. 5b displays results for axial velocity, apparent
viscosity, shear rate, viscous stress, dissipation function and
Stokes product in simple “planar plots.” For the all-important
velocity results, additional displays using three-dimensional
color capabilities are offered as indicated in Fig. 5¢c. These
capabilities, which include contour plots and mouse-rotatable
perspective displays, are available for all mesh combinations,
ranging from coarse to fine, selected by the user at run-time.
These tools, plus text output, are useful in supporting detailed
report generation.

Fig. 5b — Planar color displays of key physical field quantities.

LoganDisiay St
C Reel & Contou | © Corivuos © Sigped) © 00 C OF

Audal Velocity
Avial Velocity

Fig. 5¢c — Three-dimensional, color displays (contour maps and
mouse-rotatable perspective views).

Modeling borehole geometric irregularities.  For
convenience, the main input screen in Fig. 4a accepts off-
centered circles only. When center coordinates and radii are
entered for inner and outer circles, an information box
displays the calculated value for dimensionless eccentricity, to
provide a useful reference point for drilling applications.
Built-in error checking prevents circle cross-overs. At run-
time, both inner and outer circle coordinates may be changed
at the user’s option. As shown in Fig. 6a below, existing
contour coordinates are displayed, which may be modified
without restriction. The changes elected for the example
shown invoke changes to seven points only, in order to
describe a simple washout; this convenient online editing tool
can be used to draw washouts, cuttings beds and fracture
indentations of any shape. While Fig. 6a provides a simple
“planar plot” of velocity, Fig. 6b provides more detailed three-
dimensional resolution. Interestingly, for the simulation
shown, the presence of the washout allows a 30% increase in
flow rate for the same pressure gradient. General conclusions
are not possible, and appropriate results must be made on a
case-by-case basis.

Fle Edt View Stabe Window Hel

POLITIONS (INCHES)!
OUT

& ¥inner
0,000

GE200
01 -0, 51764

¢ 0. 2500E+01
1 0.5L766+00 0.2630e+01 0.12%ME+01

Fig. 6a — Modifying eccentric circle at run-time for washouts.
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Fig. 6b — Color display of velocity field with washout.

Yield stress modeling. As noted earlier, yield stress
modeling in eccentric annuli is important to both drilling and
cementing applications. The use of the generalized Herschel-
Bulkley constitutive model correctly predicts plug zone size
and shape for all geometries. Because a continuous flow
model is used, which guides the evolution of a single
continuous velocity field, the computational difficulties
associated with distinct internal boundaries and infinite
viscosities are avoided. The method, we emphasize, will
predict realistic plug zones with rapid gradients when they
exist, as shown in Fig. 7a.

More interesting results are shown in Fig. 7b, in which
plug zones for (1) a stationary pipe, (2) a pipe moving
opposite to the direction of net flow, and (3) a pipe moving in
the same direction of the main flow, are shown. Such
computations are important in swab-surge applications and
accurate pressure modeling. Plug zones associated with yield
stress, of course, are important to understanding cuttings
transport in drilling and fluid mixing in cementing. Again, no
special procedures are required on the part of the user, as all
dynamical features are computed automatically for both yield
stress and non-yield fluids. Computation of plug zone flows
requires no additional effort in terms of processing time and
memory resources.

Fig. 7a — Typical velocity results for eccentric annulus
with plug flow.

Fig. 7b — Non-Newtonian plug flow velocity profiles with
stationary pipe (left), pipe moving opposite to flow (middle), and
pipe moving with flow (right).

GENERAL MULTIPHASE FORMULATION
Theory, Numerical Solution and Applications

The flow of multiple non-Newtonian fluids pumped
under a general schedule, allowing full borehole eccentricity,
is of interest to both drilling and cementing operations. For
example, in modern “managed pressure drilling” (MPD)
applications, the pressure profile along the borehole wall (and,
in particular, at the drillbit) as a function of time is extremely
important from both safety and reservoir damage perspectives.
This time-varying profile depends on the pump schedule, the
rheology of the fluids being pumped, and also on the details of
the annular geometry. On the other hand, in cementing
operations, engineers need to monitor how mud, spacer and
cement interfaces evolve over time during a cement job. Fluid
intermingling may inhibit the ability of a fluid to perform its
intended purpose. Good interface modeling allows operators
to predict the causes of cement contamination and mud
channeling before they occur in real wells. Because these two
objectives are extremely important and affect safety and
economic success or failure, it is extremely important to
develop and implement mathematical models of the
underlying phenomena having the highest scientific integrity.

Over the years, the first author has been associated with a
number of leading edge research and industrial efforts aimed
at solving the extremely difficult problems described in the
introductory remarks on Pages 1-10. Progress in these areas
has been extremely rapid. As the present paper describes new
advances made during 2009-2011 in studying transient,
multiphase, three-dimensional pumping models for cementing
and drilling, it is important to explain the differences between
the present and earlier work so that formulation and semantic
differences are clearly delineated. The explanations provided
here are carefully drawn only from information publicly
available in published papers and product brochures.

Pre-existing 2001-2009 work. While “pre-existing”
might connote work performed decades ago, we, in fact, refer
to methods developed in the past ten years prior to the
publication of the present paper. First we consider basic
rheology models. A “Generalized Herschel Bulkley” (GHB)
model was first disclosed in Becker, Morgan, Chin and
Griffith (2003) which extends the Newtonian, power law,
Bingham plastic and Herschel-Bulkley constitutive equation
models used in the petroleum literature. In that paper, the
model is given by (t/t.er)™ = (to/trer)” + {u (dy/dt)/zec}" Where
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Trer IS @ reference value, 7o is the yield stress, p is a viscosity
and dy/dt is the shear rate. It is clear that, by suitable choices
of the exponents m and n, the prior models are recovered.
This model, like earlier models, does not apply in the plug
zone, and particularly, in the transition zone separating plug
and shear regimes. Thus, while it offers superior capabilities
in modeling constitutive relations, it cannot be used to
naturally compute flows in the entire annular domain as we
have by using the “extended Herschel-Bulkley” law, i.e.,

n =t /(dy /dt)
= {1 — exp(-no dy/dt /to)Hro/(dy/dt) + K (dy/d) ™} (6)

Thus, the “Generalized . . .” and “extended Herschel-
Bulkley” models are completely different, both in form and in
purpose. The earlier model contains “m” and “n” exponents
for curve-fitting and regression analysis; the present one does
not. On the other hand, the earlier model cannot be used to
determine the entire flowfield because the size, shape and
location of any plug zones in general eccentric annuli are not
known a priori. However, the present model predicts all of
these quantities quickly and naturally.

We do note that Becker et al (2003) refers to the “exact
numerical simulator” used in the first author’s book in Chin
(2001) to calculate annular flow details. While the work was
“exact” at the time, the model is, in fact, now obsolete and no
longer used here to model plug zones. The examples in Figs.
7a and 7b, for instance, were all calculated rigorously using
the approach developed for Eg. 6 above. The prior Chin
(2001) method, in retrospect, is deficient for the following
reasons. Quoting from the 2001 book,

“Finally, we return to fluids with non-zero yield stresses.
In general, there may exist internal boundaries separating
“dead” (or “plug”) and “shear” flow regimes. These unknown
boundaries must be obtained as part of the solution. In free
surface theory for water waves, or in shock-fitting methods for
gasdynamic discontinuities, explicit equations are written for
the boundary curve and solved with the full equations. These
approaches are complicated. Instead, the “shock capturing”
method for transonic flows with embedded discontinuities was
used to capture these zones naturally during iterations. The
conditions in Equations 2-14b,c [see 2001 book] were added
to the “zero yield” code. This entailed tedious “point by
point” testing during the computations, where the inequalities
were evaluated with latest available solutions.”

The “shock capturing” methods alluded to were 1970s
vintage methods used in computational fluid methods to
model internal discontinuities in fluid flows. For example, in
aerodynamics, they did at first predict shockwaves, but mass
was not conserved across shocks. Engineers nonetheless
accepted the results because they fortuitously modeled the
local boundary layer separation that occurs at the foot of the
shock near the airfoil surface — but, from a conceptual
perspective, simple shock capturing is incorrect (in aerospace
engineering, this difficulty has been successfully resolved).

The shock capturing in Chin (2001) was aimed only at
providing any computational solution that was convergent and

which led to plug zones. The procedure, defined by a
numerical recipe only, was never justified physically and its
correctness was never established. For this reason, the first
author turned his focus to embedding Eq. 6 within the
framework of the curvilinear grid formulation. For years,
numerical instabilities were encountered until they were
successfully addressed in Chin and Zhuang (2010).

The above discussion focuses on constitutive models and
their ability (or lack of) in calculating flows with plug zones.
Now we turn to the calculation of fluid interfaces and the
mixing that occurs there. Again, the first author helped
develop the physical and mathematical models reported in
References 7, 10, 11, 12 and 13, where the basic equations are
given and their results compared successfully against
experiment.  The formulations developed are somewhat
similar to Equations 9-5-1 and 9-5-2 below, except that the
newer models incorporate finite difference changes needed to
render Eq. 6 numerically stable and to enhance the robustness
of the coupled model for rotating pipe. The 2007-2008
models predict interfaces and mixing zone properties naturally
as time integrations progressed, although only to the extent
possible with the limiting GHB model.

While correct, the calculations can be extremely time-
consuming, especially if the method is generalized to handle
multiple fluid species as suggested in a 2008 product brochure
(see References for details). In fact, Savery, Chin and
Yerubandi (2008) cautiously note that, “because the structure
of the transformed stress terms is extremely complicated, the
transient integration method used is explicit in time.” Thus,
the present research sought alternative but rigorous methods to
track problems in which multiple fluid interfaces existed and
for which the dynamics associated with each interface, e.g.,
mixing zone details azimuthally around the pipe, were also
required in detail.

The two-phase model described in an illustrative
example later is given for presentation clarity only. We have
developed the method for multiple fluids, in fact, any number
of non-Newtonian fluids pumped according to any time-
varying schedule. While we have explained the simpler two-
phase flow behind Equations 9-5-1 and 9-5-2 below, a model
attributed to Landau and Lifschitz (1959), a straightforward
extension to multiple fluids would require as many
concentration equations as there exist contiguous fluid pairs.
Such a “brute force” formulation would consist of numerous
nonlinearly coupled partial differential equations which,
owing to their complexity, also require solution by explicit
finite difference time-marching schemes. Because such
schemes are by nature unstable numerically, extremely small
time steps — and hence, hour-long computing times — would be
the rule. This approach would not be conducive to rigsite
applications that demand quick solutions and results.

The interface tracking model and diffusion modeling
described in this paper is based on a completely different
approach. The physical ideas are easily explained. We
implicitly assume that all fluid slugs are much longer than the
annular diameter; this is easily satisfied in practical operations.
Assuming further than interfacial instabilities do not
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completely “destroy” the flow, a condition also met by most
service companies by virtue of their chemically stable
formulations, it is clear that the overall tracking of fluid
interfaces depends only on the pumping schedule. Thus,
interface locations can be predicted from simple “kinematic”
analyses requiring straightforward computing programming.
Once all interface positions are known, the “dynamics”
associated with, say, macroscopic pressure drops, following
the slugs, can be obtained from the simulators in Figs. 4a and
4d. If further details related to interfacial diffusive mixing
processes are needed, we view the process as one having
“boundary layer character” whose properties at left and right
are dictated by the macroscopic solution already available.
They are then computed using Equations 9-5-1 and 9-5-2.
Importantly, each on-demand “zoom” request requires the
solution of a single concentration equation only and never
involves more than one. Thus, the computational approach is
fast and stable numerically, offering almost instantaneous
feedback, and importantly, operable from standard personal
computers at the rigsite. The “plain English” explanation of
the solution strategy is now developed in detail. In the next
section, we explain the “macroscopic” solution in which
interfaces are tracked and how pressures along the borehole
wall are computed as functions of time. Then, the detailed
boundary layer solution for interface movement and mixing is
developed starting on Page 16.

Time-Dependent Pressure Profile in Eccentric
Borehole (and at Drill Bit) with Multiple Herschel-
Bulkley Fluids Pumped Under General Schedule.

This section discusses the general problem shown in
Figure 9-1-1. This is particularly relevant to managed
pressure drilling (MPD) and also to cementing operations with
combined mud, spacer and cement movement. We will
discuss the figure below with regard to MPD operations.
Here, multiple fluids (each with its own unique rheological
properties) are pumped down the drillpipe following a general
pumping schedule. Since different numbers of fluids will
occupy the pipe and borehole at different times, with their
positions obviously depending on time, it is clear that the
pressure distribution along the borehole (and, hence, at the
drill bit) will vary with time. The problem we address is the
complete pressure solution versus space and time. We note
that the drilling system shown in Figure 9-1-1 can be
topologically “unwrapped” into the form given in Figure 9-2-
1. Hence, we turn to that diagram, which greatly simplifies
the discussion (bends introduce centrifugal effects which are
modeled in the steady simulator).

Pressure P (t)
at surface choke

Multi-fluid
transient pump
schedule

RCD rotating Mud
control device

@ @ Vertical
concentric
@ section

Horizontal or deviated well

N &andeccentricannulus Drillbit P (t)
? /
~ (=
Tumi
s B
Z

Pipe rotation Tripping in or out

Figure 9-1-1. General managed pressure drilling formulation.

Discussion 9-2. Interface tracking and total pressure
drop for multiple fluids pumped in drillpipe and
eccentric borehole system.

In this example, we will consider a centered or
eccentered drillpipe (with cross-sectional area Aipe) located in
a borehole annulus whose geometry is unchanged along its
length. The annular area is Agnuis: Note that while pipe area
is simply available from “anipez," the same is not true for the
annulus if the cross-sectional contours from two initially
eccentered circles have been edited to incorporate washouts,
cuttings beds or fractures. If so, the “Steady 2D” simulator
automatically computes and displays total cross-sectional area
by summing incremental trapezoidal areas constructed from
the curvilinear grid.

Now, mud progresses down the drillpipe, then out
through the drillbit, and finally, flows upward in the return
annulus. At the outset t = 0, a single initial fluid with
Herschel-Bulkley properties (no, Ko, o) is assumed to exist in
the pipe and annular system (n is the fluid exponent, K is the
consistency factor, and 1, is the yield stress). The initial fluid
may be flowing or quiescent. At t = 0+, the mud pump starts
to act according to a user-defined pumping schedule with
piecewise constant rates. At t = t; = 0+, Fluid “1” with
properties (ny, Ky, 101) is pumped into the pipe at the volume
flow rate of Q, while at t = t;, a second Fluid “2” with
properties (ny, Ky, To2) IS pumped at rate Q,, and so on. In
fact, we have

o Fluid “1” pumped at rate Q;: to< t <ty
o Fluid “2” pumped at rate Q,: t; < t <t
o Fluid “3” pumped at rate Qs: t, < t <t
o Fluid “4” pumped at rate Q;: tz3< t <ty
o Fluid “5” pumped atrate Qs: t > t,

The overall pumping process is illustrated at the top of
Figure 9-2-1. Here, fluid introduced at the far right into the
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drillpipe travels to the left, and then turns at the drillbit (not
shown), and finally progresses to the very far right. The
middle diagram shows five interfaces (starting at to, t;, t, t3
and t,) associated with the onset of each pump actions. The
location “z;” (using the “little z” left-pointing coordinate
system shown) describes the interface separating the initial
fluid ahead of it with Fluid “1” just behind it. Similarly, “z,”
separates Fluid “1” ahead of it and Fluid “2” behind it. The
last Fluid “5” is a single fluid that is pumped continuously
without stoppage with flow rate Qs fort > t,.  While more
interfaces are easily handled programming-wise, a limit of five
(which models six fluid slugs) to enable rapid modeling and
job prototyping, was assumed, since this number suffices for
most rigsite planning purposes. Once the first interface
reaches the end of the drillpipe, shown with length L, that is,
z; = L, it turns into the borehole annulus and travels to the
right. Similar descriptions apply to the remaining interfaces.
Annular interfaces are described by the “big Z” right-pointing
coordinate system at the bottom in Figure 9-2-1. When Z; =
L, the first fluid pumped will have reached the surface.

. ! -

e - T

S
Z</e

A |
J4Y 990 )

s
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Figure 9-2-1. General pumping schedule.

Figure 9-2-1 provides a “snapshot” obtained for a given
instant in time. At different times, the locations of the
interfaces will be different, and pressure profiles along the
borehole (and hence, at the drillbit) will likewise be different
as the Q’s also vary. Also, while the discussion focuses on
drilling applications with distinct mud interfaces, it is clear
that all of the results apply to cement-spacer-mud systems.

Now, we wish to determine the locations of z; ;345 and
Z3,345 as functions of time. In general, this is a difficult
problem if the fluids are compressible, or if significant mixing
is found at fluid interfaces, or both. However, if the lengths of
the fluid slugs are long compared to the annular diameter (so
that mixing zones are not dynamically significant), and
further, if the pump acts instantaneously and transient fluid

effects reach equilibrium quickly, interface tracking can be
accomplished kinematically.  Once the locations of all
interfaces are known for any instant in time, pressure drop
calculations (for each fluid slug) proceed using the 2D non-
Newtonian flow models developed previously.

Two output tables are provided by the “interface
tracker.” The calculations are performed almost
instantaneously by the software model. The two are,
respectively, “Drillpipe Fluid Interfaces vs Time” and
“Annular Fluid Interfaces vs Time,” as shown in Figures 9-2-2
and 9-2-3. The numbers assumed for these tables are
obviously not realistic, and for this reason, the units shown in
the headings should be ignored for now. They were chosen
only so that all results fit on the printed page, with all values
allowing convenient visual checking and understanding of the
computer output.

ELAPSED TIME FLOW Drillpipe Fluid Interface (feet)

Minutes Hours GPMs z (1) z(2) z(3) z (4) z (5)
0 0. 1 0 0 0 0 0
1 0. 1 1 0 0 0 0
2 0. 1 2 0 0 0 0
3 0. 1 3 0 0 0 0
4 0. 1 4 0 0 0 0
5 0. 2 5 0 0 0 0
6 0. 2 7 2 0 0 0
7 0. 2 9 4 0 0 0
8 0. 2 11 6 0 0 0
9 0. 2 13 8 0 0 0
10 0. 3 15 10 0 0 0
11 0. 3 18 13 3 0 0
12 0. 3 21 16 6 0 0
13 0. 3 24 19 9 0 0
14 0. 3 27 22 12 0 0
15 0. 4 30 25 15 0 0
16 0. 4 34 29 19 4 0
17 0. 4 38 33 23 8 0
18 0. 4 42 37 27 12 0
19 0. 4 46 41 31 16 0
20 0. 5 50 45 35 20 0
21 0. 5 55 50 40 25 5
22 0. 5 60 55 45 30 10
23 0. 5 65 60 50 35 15
24 0. 5 70 65 55 40 20
25 0. 5 75 70 60 45 25
26 0. 5 80 75 65 50 30
27 0. 5 85 80 70 55 35
28 0. 5 90 85 75 60 40
29 0. 5 95 90 80 65 45
30 0. 5 100 95 85 70 50
31 1. 5 0 100 90 75 55
32 1. 5 0 0 95 80 60
33 1. 5 0 0 100 85 65
34 1. 5 0 0 0 90 70
35 1. 5 0 0 0 95 75
36 1. 5 0 0 0 100 80
37 1. 5 0 0 0 0 85
38 1. 5 0 0 0 0 90
39 1. 5 0 0 0 0 95
40 1. 5 0 0 0 0 100
41 1. 5 0 0 0 0 0

Figure 9-2-2. “Drillpipe Fluid Interfaces vs Time.”

Note that 0’s at early times along a z column indicate
absence of the particular fluid in the drillpipe. Also, once the
interface has reached the position “100,” the end of the
borehole in this illustration, the subsequent O’s are no longer
meaningful and are used only to populate the table. Also, the
very small annular area of Agnnus Selected later was designed
so that we can “watch fluid move” in the table of Figure 9-2-3.

To facilitate visual interpretation, we have assumed that
Apipe = 1 and Agnus = 0.5, so that the nominal linear
displacement speeds in the pipe and annulus are Upipe = Q/Apipe
and Ugznnus = Q/Aannuiis:  The borehole length is assumed for
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clarity to be 100. At the same time, we pump according to the
schedule

o Fluid“1”atarateof Q;=1: 0 =tg< t <t,=5

e Fluid “2” atarateof Q,=2: 5 =t;< t <t,=10
e Fluid “3” atarate of Q;=3:10 =t, < t <t;=15
e Fluid “4” atarate of Q,=4:15 =t3< t <4,=20
e Fluid “5” at a rate of Q5= 5: t >1,=20

where the five interfaces originate at to, t;, t, t; and t;. We
next explain Figure 9-2-2. The left column provides elapsed
minutes, while the second provides elapsed hours. The
volume flow rate is given in the third column. The
corresponding drillpipe fluid interfaces z; ;345 are given in the
five remaining columns.  Also, each change is flow rate
(associated with a new interface) is separated by a single
horizontal line spacing to enhance clarity. Consider the result
for z,. In the first time block with Uyiee = 1/1 = 1, the interface
advances at a rate of “1.” In the second block with Ugpe = 2/1,
the interfaces advances at the rate “2.” As time increases, the
easily recognized rate increments are 3, 4 and 5 following the
above pump schedule.

ELAPSED TIME FLOW Annular Fluid Interface (feet)
Minutes Hours GPMs Z(5) Z(4) Z(3) Z(2) Z (1)
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Figure 9-2-3. “Annular Fluid Interfaces vs Time.”

The z; interface starts moving at t = 0. Now we turn to
the second interface and study the column for z, results. Att
= 5, the second interface starts moving. Because we are
already in the second time block, the interface moves at the
rate “2.” Subsequent speeds are 3, 4 and 5. Similarly, z; starts
at t = 10 and rate increments with 3, followed by 4 and 5, and
so on. We have described Figure 9-2-2 from the perspective
of tracking individual fronts. However, the table is important
for pressure calculations. Let us consider the results obtained
at t = 26 (these are shown in bold font for emphasis). In
particular, we have

ELAPSED TIME FLOW Drillpipe Fluid Interface (feet)
Minutes Hours  GPMs z (1) z(2) z(3) z(4) z(5)

26 0. 5 80 75 65 50 30
This printout indicates that, at t = 26, the front z; is
located at z = 80, while the last front zs is located at z = 30.
The drillpipe thus contains six distinct fluid slugs at 100 > z >
80,80>z>75,75>2z>65,65>z>50,50>z>30and 30 >
z > 0 where “100” refers to the assumed borehole length. In
fact —

100>z >80 contains “initial fluid” with properties (no, Ko, To,0)
80 >z>75 contains Fluid “1” with properties (n, Ky, to4)
75 >z>65 contains Fluid “2” with properties (n,, Ky, 192)
65 >z>50 contains Fluid “3” with properties (ns, Ks, to3)
50 >z>30 contains Fluid “4” with properties (n,, K4, To4)
30 >z> 0 contains Fluid “5” with properties (ns, Ks, tos)

If a non-Newtonian flow model for a Herschel-Bulkley
fluid in a circular pipe were available that gave the pressure
gradient (0P/0z)yipen for any of the given fluid slugs “n”
flowing at rate Q with a pipe radius (Ayipe/m)"?, then the total
drillpipe pressure drop is simply calculated from (100 — 80)
(OP/0Z)pipeo + (80 — 75) (OP/0Z)piges + (75 — 65) (OP/0Z)pipe2 +
(65-50) (OP/0z)pipes + (50 — 30) (OP/0Z)pipesa + (30 — 0)
(OP/0Z)pipes. The flow rate Q used would be the one applicable
at the time the snapshot was taken, in this case, Q =5att =26
(a single rate applies to all slugs at any instant in time). Now,
at time t = 26, Figure 9-2-3 shows, as indicated by “0’s,” that
none of the pumped fluids have arrived in the annulus, that is,
we have —

ELAPSED TIME FLOW Annular Fluid Interface (feet)

Minutes Hours  GPMs Z(5) Z(4) Z(3) Z(2) Z(1)
26 0. 5 0 0 0 0 0

Thus, the only fluid residing in the annulus is the initial fluid.
If the pressure gradient obtained from an eccentric flow
analysis is (0P/0z)annuius 0, then the pressure drop in the annulus
is just (100 — 0) (OP/0Z)annuiso- I we further denote by A the
pressure drop through the drillbit, then the total pressure drop
through the entire pipe-bit-annulus system is obtained by
summing the prior three results, that is, (100 — 80) (OP/0z)pipe.0
+ (80 — 75) (OP/dZ)pipe1 + (75 — 65) (OP/OZ)pipe2 + (65-50)
(OPI0Z)pipe;s + (50 — 30) (OP/0Z)pipea + (30 — 0) (OP/0Z)pipes + A
+ (100 — 0) (0P/0Z)annuius0, Which is the pressure (additive to
the surface choke pressure Psyre) required at the mud pump to
support this multi-slug flow.
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The software that creates Figure 9-2-2 also provides the
times at which fluid interfaces in the drillpipe enter the
borehole annulus. These are obtained from the table in Figure
9-2-2 by noting the “100” marker. In this case, we have

Borehole total length L, is: 100 ft.
Fluid “1” enters annulus at: 30 min.
Fluid “2” enters annulus at: 31 min.
Fluid “3” enters annulus at: 33 min.
Fluid “4” enters annulus at: 36 min.
Fluid “5” enters annulus at: 40 min.

We next consider another time frame, say t = 36, for
which the drillpipe interfaces have entered the annulus, and
explain how annular pressure drops are determined, e.g., see
Figure 9-2-4. For this time frame, Figure 9-2-3 gives

ELAPSED TIME FLOW Annular Fluid Interface (feet)
Minutes Hours  GPMs Z(5) Z(4) Z(3) Z(2) Z (1)

36 1. 5 0 0 30 50 60

This indicates that three interfaces exist in the annulus, with Z;
located at the far right Z = 60, followed by Z, at Z = 50 and Z;
at Z = 30. Since the fluid ahead of Z; is the “initial fluid,” the
total annular pressure drop is calculated from the sum (100 —
60) (OP/0Z)annuisp + (60 — 50) (OP/0Z)annuis: + (50 — 30)
(OPIOZ)annuius2 + (30 — 0) (OP/OZ)annuiss Where subscripts
denote fluid type for the annular model.
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Figure 9-2-4. Example annular interface distribution.

We note that the actual pressure Pgt at the drillbit in the
formation is obtained by adding the total annular pressure drop
to the pressure Psyrr Obtained at the surface choke. The value
of Psure is in itself a “boundary condition,” and, importantly,
the pressure Pg,r at the bottom of the annulus in the formation
does not depend on the pressure drop A through the drillbit.
On the other hand, the pressure required at the pump to move
the system flow includes pipe, bit and annular losses, as
shown in Figure 9-2-5 for one interface configuration.

P

PUMP

Per+ A ]
Drillpipe @ Pur Time snapshot,
or casing annul?r Z values
domain from interface

tracker

Figure 9-2-5. Complete drillpipe-drillbit-annulus system.

THREE-DIMENSIONAL, TRANSIENT, MULTIPHASE
INTERFACIAL FLOW ANALYSIS

Let us recall that, for purely steady, two-dimensional,
non-rotating, single-phase flow of a yield-stress or non-yield
non-Newtonian fluid, the general partial differential equation
below applies.

a (N duldy)l dy + o (N dulox)l ox = oPloz (4)

We again emphasize that the above equation can be easily
solved in seconds for highly eccentric annuli with or without
axial pipe movement, using methods based on boundary-
conforming curvilinear coordinates, with either pressure
gradient or volume flow rate specified, via the software
implementation in Fig. 4a.

When the inner pipe rotates, the method of Fig. 4a does
not apply, since the numerical solution of a purely steady
formulation is unstable. Again, this does not mean that steady
solutions with rotation are not possible. As demonstrated in a
companion work on the effect of rotation on flowrate and
pressure gradient in eccentric holes, steady, rotating flow
solutions can be easily obtained as the large-time asymptotic
solution of a transient formulation. This is accomplished
using the code in Fig. 4d, which solves the coupled, single-
phase, momentum equations in the axial and azimuthal
directions on curvilinear grids, again for extended Herschel-
Bulkley fluids, with or without axial pipe movement. The
solution process requires seconds for low-density fluids, but
for fluids denser than water, may require 2-3 minutes of
computing time.

For the remainder of this paper, we will therefore assume
that the axial pressure gradient on a single-phase flow basis is
readily available for inner pipe that is moving both axially and
azimuthally using the formulations in Fig. 4a or Fig. 4d.
These pressure gradients, as we will see, provide the auxiliary
conditions needed in the formulation and solution of the
general transient, multiphase flow formulation in three spatial
dimensions.

In the approach to the general problem for multiple slugs
of non-Newtonian fluid pumped into the annulus following a
general pumping schedule, we decompose the formulation into
two parts. We implicitly assume that each slug of fluid is very
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long compared to the annular diameter. Thus, the
macroscopic motion and position of all fluid interfaces can be
approximately determined by the interface tracking model that
we had developed earlier. Again, the model tracks more than
interface positions versus time: the complete pressure profile
along the borehole is available as a function of time. This
therefore includes the time history of pressure at the drillbit,
an important consideration for managed pressure drilling.

To obtain interfacial properties related to diffusive and
convective mixing, we adopt the “boundary layer” strategy
used in fluid mechanics. In flows past airplane wings, for
instance, the pressure field is first determined on an inviscid
flow basis; this pressure is then “impressed” across the
boundary layer at the wing surface and local frictional effects
satisfying a diffusion equation are then calculated.

For this problem, the interface tracking model provides
the macroscopic description, one which dictates where
interfaces are, and then, by applying the methods of Fig. 4a
and Fig. 4d, additionally determines overall pressure histories
at each location along the borehole. Now, the microscopic
“boundary layer” formulation is one seeking to determine the
details of the convective-diffusive mixing process in a
relatively narrow zone. Unlike an aircraft boundary layer, the
transition zone or mixing region here can be several feet. As
in boundary layer theory, we now “zoom” into the nearfield
adjacent to the interface separating two contiguous fluids, as
shown in Figure 9-5-1, in a three-dimensional sense. We refer
to this as the “Zoom3D” function.

o (N -]
S RvET

— —>
Ze Fluid Zimsrface Fluid
uid)f Uld gt
t>0 Diffusion zone
o — \ R
CIeft =1 ‘\ Cright =0
0U/0Z, =0 <> ) ) R Upipe > ) ) 6U/aZright =0
— —>
Ze Zinterface
OP/OZ, ., from steady OP/OZ ;. from steady

or transient 2D solvers or transient 2D solvers

Figure 9-5-1. Transient, multiphase, boundary layer model.

The top diagram in Figure 9-5-1 shows a “left” fluid
displacing a “right” fluid at t = 0. The interface, per the
interface tracking model, is infinitesimally thin. At later times
t > 0, the diagram at the bottom applies, indicating a widened
mixing zone. In the nearfield model, we ask how long the
zone takes to widen and its corresponding width, which may
vary across the cross-section of the annulus, and also as a
function of time. The extent of multiphase fluid mixing
dictates the quality in a cementing job. The multiphase
problem, we might note, is not so important to drilling, but
other features of the three-dimensional method may be useful
in real-world drilling applications.

Mathematical formulation. Evidently, the annular flow
problem is now three-dimensional, transient and multiphase.
How is this modeled and solved? We obtain practical
solutions following the approach first suggested by Landau
and Lifschitz (1959), although modified to account for the
complexities of the problem at hand. Instead of Eq. 4, we now
have the transient axial momentum law in Equation 9-5-1, in
which we have added a third flow direction “z” oriented
axially.  The left side represents nonlinear convective
acceleration effects, with “v” being the azimuthal velocity
function. N(C) now represents a concentration-dependent
apparent viscosity function, while the pressure gradient oP/oz
now varies in the z direction in a manner to be discussed.
Note that the equation for “v” is similar to Equation 9-5-1.

The concentration C(x,y,z,t) satisfies the convective
diffusive law in Equation 9-5-2 where ¢ represents an
empirically determined diffusion coefficient that may depend
on flow rate, species or concentration (its transformed
equivalent is shown in Equation 9-5-3 for reference, noting
that the result for “u” takes a similar form). Note that the
solutions for u, v and C are now nonlinearly coupled transient
partial differential equations of parabolic type. Laboratory
measurements may be used in one-dimensional experiments to
determine ¢ — then, use of this ¢ in three-dimensional transient
applications may yield important physical insights relating to
the role of annular geometry.

p(ou/ot + vir ouloB + u ouloz) =
=— 9PIdz + N(C) (8°ulox? + dPuldy® + 6°uldz?) + . . . (9-5-1)
oClét + vir 6Clo0 + u 6Cloz =

= - g (8°Clox* + &°Cloy? + &°Cloz?) (9-5-2)
oClot+q(&,n,2)- VC=
= ¢ {Cy+(aCqg - 2BCq +YCqy) %} (9-5-3)

Solution strategy. As in previous work, the differential
operators in the x-y cross-space are re-expressed in curvilinear
coordinates, while “z” remains “as is.” Central differences are
used for all spatial derivatives and backward differences are
used for time derivatives in an explicit marching scheme. The
boundary conditions are shown in Figure 9-5-1. Far upstream
and far downstream, the velocity field is assumed to be
smooth with du/oz = 0. At the left, a “left fluid” is assumed
with a concentration C = 1, while at the right, a second “right
fluid” is taken with C = 0. The initial condition is shown at
the top of Figure 9-5-1. At each time step, the spatial
distribution of C is monitored. The front defined by the locus
of points for which C = 1 travels to the right. To its left, the
pressure gradient (0P/0z)¢ obtained from the model in Fig. 4a
or Fig. 4d is used accordingly as the pipe does not or does
rotate. Similarly, the pressure gradient (6P/0z)yign IS used at
the right of the interface. In a uniform fluid, the pressure
gradient is constant throughout. When two contiguous slugs
of fluid move at a flow rate Q, two different pressure gradients
are present, since two different rheologies are present in the
problem. Note that, because slug lengths are great compared
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to annular diameters, only two fluids (satisfying a single
concentration equation) need to be treated at any given
“Zoom3D” application, in contrast to the earlier work reported
by the first author and his colleagues.

Example results. In the numerical model, we have
allowed variations in borehole annular geometry in the axial
direction. This is important in practical applications where the
effects of anomalies like localized washouts and cuttings
accumulations on velocities and viscous stresses are to be
studied.  Thus, in order to support three-dimensional
modeling, the cross-sectional mappings are performed as
needed, with transformations Jacobians and other metrics
incorporated into three-dimensional arrays.

Figure 9-5-2. Uniform eccentric annulus.

Figure 9-5-2 shows the computed concentration field as a
function of time, with the fluid interface propagating to the
right and widening as it moves. Here, high velocities are seen
at the wide side of the annulus. The amount of diffusion
clearly differs azimuthally around the pipe. The annular
region is clearly eccentric, but the borehole cross-section does
not change with axial position. In Figure 9-5-3, we have a
concentric annulus, however a highly eccentric section is
introduced between the borehole ends in order to demonstrate
three-dimensional effects and computational stability in the
presence of sudden geometric changes. Figure 9-5-4 displays
typical results from Savery, Tonmukayakul, Chin et al (2008)
which support the approach used in this paper. Note that
while we have plotted the concentration field as it varies with
time, in order to highlight cement-mud displacement
operations, we could easily have plotted the axial velocity
field using color coded graphics for single-phase flow drilling
applications. For horizontal drilling, the ability to model local
geometric anomalies, e.g., cuttings beds, washouts, and so on,
supports well stability and hole cleaning planning activities.

Figure 9-5-3. Concentric annulus with
embedded eccentric section.

| ——
| _—

Figure 9-5-4. Experimental results,
Savery, Tonmukayakul, Chin et al (2008).

User interface. As noted, e.g., refer to the formulation
outlined in Figure 9-5-1, for general non-Newtonian flows
with pipe rotation, inputs to multiphase calculations include
pressure gradients obtained from the detailed calculations in
Fig. 4a and 4d. User interface design is complicated by these
auxiliary requirements and the aim is an easy-to-use software
environment that solves this near-field problem as well as the
macroscopic interface tracking automatically. In order to be
completely transparent to the user, the interface logic must be
capable of detecting slow convergence (or non-convergence)
and correct for this without human intervention. This is
presently an area of active work. While important, the task is
straightforward and involves programming only. For
Newtonian mixtures, the availability of exact scaling laws
automates the computations. The interface in Figure 9-5-5, for
example, allows introduction of borehole anomalies in the
geometry definition with online editing, and also, provides “on
demand” movie playback of all physical properties in addition
to detailed tabulations. The menus in Figures 4a, 4d and 9-5-5
are called from a central menu. The complete system will
integrate all of these software elements.
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Figure 9-5-5. Candidate multiphase flow user interface.
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More general problems. An additional, more general,
two-part interface has been developed for non-Newtonian flow
problems with or without rotation. This is accessed from the
high-level menu of Fig. 9-5-6. The first menu is shown in the
foreground of Fig. 9-5-7 and accepts inputs related to the
pumping schedule and the fluid rheologies associated with
each pump interval. For example, two distinct pressure
gradients would be inputted to model the displacement of one
fluid by another. The second menu is shown in the
background and accepts inputs related to annular geometry
definition and simulaton parameters.
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Figure 9-5-6. High level transient, 3D, multiphase menu.
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Figure 9-5-8. Axial velocity (left), apparent viscosity (right),
flow moving downward in each frame, time increases
downward from frame to frame.

Figure 9-5-7. Transient, 3D, two-phase mixture formulation.
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Figure 9-5-9. Apparent viscosity for “constant m” or
azimuthal angle.
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Figure 9-5-10. Axial velocity solution.
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Figure 9-5-11. Azimuthal velocity.
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Figure 9-5-12. Reynolds number, very low, stable flow.

On completion of the transient, three-dimensional,
multiphase simulation, different types of outputs are available.
For instance, Figure 9-5-8 captures movie frames showing the
timewise evolution of the velocity and apparent viscosity
fields in an azimuthal plane specified by the user. Movies are
accessed by clicking the “Movie” button in Figure 9-5-7. The
same menu also provides direct access to numbers, and typical
screens are shown in Figures 9-5-9 to 9-5-12. Note that the
very low Reynolds numbers shown in the last printout indicate
fluid stability on a single-phase flow basis. The fluid interface
in the above movie frames is seen to widen gradually as it
convects downward.

Closing Remarks

The present paper describes new capabilities in modeling
steady and transient non-Newtonian flow in highly eccentric
annuli, with or without plug zones associated with yield stress
fluids, with realistic geometric anomalies, plus effects like
borehole axis curvature and drillpipe translation and rotation.
In particular, we address the flow of multiple slugs of non-
Newtonian fluid pumped into the pipe and eccentric annulus
system, and in doing so, track all interfaces, borehole pressure
profiles, plus details of interfacial mixing processes. The
rigorous fluid-dynamical model formulated here and its exact
mathematical solution, augmented by rapidly converging
algorithms and convenient color displays, are intended to
provide state-of-the-art capabilities useful to managed
pressure drilling, hole cleaning and cement-mud displacement
in highly deviated and horizontal wells.
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