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Abstract
In pre-1990s literature, exact non-Newtonian flow

solutions and field experiences consistently demonstrated that
drillstring rotation increases flowrate for a fixed pressure
gradient, or equivalently, decreases pressure gradient
(magnitude) for a fixed flowrate, the effect being attributed to
apparent viscosity reduction due to shear-thinning.  Field
experiences in the past two decades, however, indicate the
exact opposite, and recent papers have failed to determine the
causes of the apparent contradictions and resulting confusion.
It turns out that there are no inconsistencies:  the boreholes
considered recently are highly eccentric because they are
deviated or horizontal, for which new convective terms in the
governing momentum equations appear which are due to
annular eccentricity and which modify the effective pressure
gradient (these terms are not present in older studies, which
consider only concentric annuli).  Exact numerical solutions
demonstrate the role of eccentricity in changing flowrate or
pressure gradient during drilling.  Because the changes are not
small, drillstring rotation can be used to control pressure in
managed pressure drilling applications and in cementing.  The
implications are more efficient drilling and improved safety.
The computational model developed uses boundary-
conforming, curvilinear mesh systems to describe annular
geometry exactly, and rapidly converging, stable, transient
algorithms have been developed to solve the general rheology
equations with and without yield stresses.

Introduction
Non-Newtonian flows in highly eccentric annuli with

cuttings beds, washouts and fractures, encountered in
cementing and managed pressure (and underbalanced) drilling,
are solved without crude slot flow and hydraulic radius
approximations.  The nonlinear partial differential equations,
written to customized, boundary-conforming, curvilinear
coordinate grid systems providing high physical resolution in
tight spaces, are solved exactly with no-slip conditions, and
detailed velocity, apparent viscosity, shear rate and viscous
stress fields are computed for pressure drop, hole cleaning and
other applications.  For fluids with yield stress, well known
uncertainties related to plug zone size and shape are fully
resolved using Herschel-Bulkley relations applicable across
transition boundaries (determined iteratively as part of the
solution) reaching into and across the plug.  Two-dimensional,
single-phase, steady flow simulations, solved rapidly using

finite difference methods, provide detailed numbers and color
displays for all physical quantities within seconds, with
excellent numerical stability for all fluid types with and
without yield stress.  Formulations for steady-state casing or
drillpipe longitudinal translation and rotation are presented,
and extensions to model transient incompressible effects
associated with starting, stopping and periodic movement,
important in evaluating cement-mud displacement efficiency,
axial-helical cuttings transport, swab-surge, and jarring
remedies for freeing stuck pipe, are developed.  Practical
problems are presented and the advantages over existing
models are described.

In this paper, extensive calculation methods and new
modeling capabilities are presented for job planning and
steady-state and fully transient rotating flow analysis in
modern managed pressure drilling applications.

Background

Annular flow modeling in boreholes, important to both
drilling and cementing, is as old as petroleum engineering
itself.  In the simplest case, flow configurations are
represented by concentric circles through which steady, two-
dimensional, Newtonian and power law fluids flow; in these
limits, exact analytical or numerical solutions of the flow
equations provide useful tools for operational applications.
For more complicated problems, e.g., eccentric annuli, non-
ideal geometric irregularities, non-Newtonian yield stress
fluids, pipe translation and rotation, however, numerous
mathematical obstacles arise, which unfortunately introduce
inefficiencies into field practices.  We discuss these problems
next.

Geometric complications.  In deviated and horizontal
wells, heavy pipe and drill collar weight implies eccentric
positioning within the borehole, as shown in (a) of Fig. 1,
leading to difficulties in geometric description and solution.
High eccentricities are often accompanied by non-symmetrical
washouts, thick and irregularly formed cuttings beds, and
possibly, fracture indentations.  Early in petroleum
engineering, the notion of a simple “mean hydraulic radius”
permitting representation as an equivalent circular pipe flow,
as depicted in (b) of Fig. 1, was widely employed; this
approach, however, was not useful since what is meant by
“mean” is not obvious and certainly not generally applicable
from one situation to the next.  Later “slot flow” models
“unwrapped” the eccentric annulus, with the result as
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illustrated in (c) of Fig. 1, and then, further discretized the
resulting slot into local parallel plate elements, each of which
is approximately modeled by simple solutions for fluid flow
between ideal parallel plates.  While somewhat reasonable,
this approach applied strictly to very narrow annuli, but even
then, curvature terms in the general governing momentum
equations are always neglected.  Thus, inertial effects are
never properly modeled even in the limit of very narrow
elements.

Fig. 1 – Idealizations commonly used to represent eccentric
borehole annuli.

Improvements to slot flow models are provided by “pie
slice” formulations, idealized in (d) of Fig. 1, in which
eccentric annuli are represented by “pie slices” of varying size
and included angle having the pipe center as a virtual origin.
The solution for each slice is taken from the numerical
solution for a concentric annular problem with a closely
matched radius.  In this approach, pie slices ranging from
small to large are used.  However, it is clear from the sketch
that perfect geometric matching of the borehole boundary is
never completely achieved, so that adequate modeling of
curvature effects is approximate at best.  Moreover, the
concentric solutions used are numerical in the case of yield
stress fluids and awkward in implementation.  More recently,
authors have used “bipolar coordinates” to represent eccentric
circles, and while these provide useful host formulations for
zero-yield-stress fluids, the algebra required to represent even
the simplest non-Newtonian flow problems is overwhelming
compared to the methods introduced later.  The mapping
method used in the present paper, it turns out, provides
superior modeling capabilities in that the complete momentum
equation for any rheology and annular geometry can be solved
exactly.  The new approach is less intensive numerically and
easily describes realistic cuttings beds, washouts and fracture
indentations.

Geometric difficulties, however, are much more than
what meets the eye.  When yield stress fluids flow, “plug
regimes” that move as solid bodies are always present in flow
domains below a given yield stress.  When slot flow or pie
slice models are used to simplify the solution process, “plug
rings” are always obtained by virtue of the adhoc recipes
described above.  This is physically incorrect in most
operational situations characterized by high eccentricity.  For
example, one would expect a large, isolated, almost circular
plug element at the wide side of (a) of Fig. 1 and perhaps in a
narrow strip at the bottom, but a flow containing such a solid

plug would be ruled out by both solution methods.  Until
recently, of course, exact solutions for (a) Fig. 1 with yield
stress fluids, e.g., Bingham plastics and Herschel-Bulkley
models, were impossible anyway for one important reason –
theoretically, the size and shape of the plug zone are unknown
in problems without azimuthal symmetry, and without
knowledge of these internal boundary properties, a complete
flow solution could not be obtained.  This paper addresses and
solves this problem in its complete generality.

Mathematical difficulties.  Ideally, one would represent
the details of highly eccentric annular domains exactly and in
their entirety using boundary-conforming, curvilinear meshes,
to which the governing equations of motion would be written,
solved, and post-processed for relevant engineering
information.  However, this is often numerically difficult
because there are as many distinct partial differential equation
formulations as there are fluid rheologies, e.g., the equations
for Newtonian, power law, Bingham plastic and Herschel-
Bulkley fluids are very different, each with its own
convergence, stability and physical properties.   Moreover,
because the equations are generally nonlinear, solutions must
be obtained by iterative means.  In fact, iterative solutions
solving complicated grid generation equations must be
followed by iterative solutions to produce the required
flowfields on the resulting meshes.  These difficulties are
compounded, typically, by user inexperience in computational
grid generation and numerical analysis.  Even when solutions
to underlying velocity fields are available, post-processed field
solutions for shear rate, viscous stress, apparent viscosity, and
so on, need to be automated and rapidly displayed in order to
be useful in real-time applications.  This requirement is
particularly relevant in ultra-deepwater applications since fast
and accurate pressure solutions are required to navigate the
narrow window between formation fracture and disastrous
blowout.  These problems are all addressed in the software
development program.

User interface considerations.  Assuming that both
geometric and mathematical issues can be addressed
satisfactorily, human factors issues relating to software usage
become all-important especially in the anticipated applications
to managed pressure drilling in ultra-deepwater drilling and
hole-cleaning at high deviation angles.  Physical formulations
must be mathematically rigorous, numerical solutions must be
detailed and pertinent to the annular geometry at hand, and
complete field solutions for all engineering properties must be
achievable in a manner that is completely transparent to
typical engineering users with undergraduate degrees – and,
even better, to field technicians with minimal modeling
experience or mathematical training.  This requires fully
automatic grid generation, nonlinear equation setup and stable
matrix inversion.

The user interface must be designed with rigsite
workflows in mind.  Importantly, accuracy and speed, that is,
“desktop speed” from problem definition to automated color
displays, go hand-in-hand, because of demands imposed by
narrow margins between pore-pressure and fracture-pressure
gradient profiles in modern offshore applications.  All of the
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above considerations, again, accurate geometric modeling,
rigorous mathematical formulation and solution, and fast,
user-friendly, graphically-oriented software implementation,
render the general annular flow modeling problem extremely
challenging.  We now address each of the foregoing issues and
explain how the solutions satisfactorily address these needs.

Exact Geometric and Mathematical Formulation

Boundary-conforming, curvilinear meshes. Coordinate
systems “natural” to engineering problems play vital roles in
facilitating efficient and accurate computational solutions.  For
example, circular coordinates are natural to circular wells
producing from infinite reservoirs, while rectangular systems
are ideal for problems solving, say, temperature distributions
on rectangular plates.  By the same token, a mesh system
suitable for eccentric annular geometries would have inside
coordinate lines that coincide with circular or square drill
collars with stabilizers, while outside lines would conform to
irregular borehole walls with their cuttings beds, washouts and
fracture indentations.  A second set of coordinate lines might
be constructed orthogonally to the first, although this is not
necessary if all terms in the resulting transformed governing
equations are retained.  By contrast, it is clear that rectangular
(x,y) or circular (r,) coordinates are less than satisfactory for
accurate geometric description of general annuli.

In natural “boundary-conforming, curvilinear
coordinates,” here denoted by (,), boundary conditions
would be easily specified.  For example, the no-slip velocity
condition for stationary surfaces, say, at pipe and borehole
surfaces, is simply described by “u = 0” along horizontal grid
lines  = pipe and = borehole where the subscripted numbers
are constants.  By contrast, the formulation in rectangular
coordinates would require u = 0 applied along cumbersome
curves, e.g., u{x,f(x)} = 0 where y = f(x) represents internal
and external contours.

The objective behind grid generation is a set of
transformations (x,y) and (x,y) that enable simple boundary
condition implementation, so that a complicated physical
region, here the eccentric borehole annulus, becomes a simple
rectangular one in a computational domain, where the solution
of the mathematical problem is undertaken.  Once the
mapping transforms are available, the governing equation
itself must be expressed in the new coordinates.  For example,
the partial differential equation for steady-state, two-
dimensional, Newtonian fluid flow is the well known uxx + uyy

= - -1 P/z where  and P/z represent viscosity and
applied pressure gradient. Although this appears in rectangular
coordinates, the equation applies to all annular geometries.

The conversion process itself is straightforward.
Suppose we wish to express a function u(x,y) in terms of
convenient independent variables  and .  If the
transformations x = x(,) and y = y(,) are available, direct
substitution allows us to rewrite u(x,y) in the form u(x,y) =
U(,), where the functional relation U(,) between  and
is generally different from the relation u(x,y) connecting x

and y.  Derivatives of u(x,y) with respect to x and y are easily
related to derivatives of U(,) taken with respect to  and .
For example, it is easily shown that U = uxx + uy 

yand U =
uxx + uy 

y for the first derivatives, with obvious extensions
to second derivatives obtained using the chain rule of calculus.
In general fluid-dynamical problems, the resulting equation
for U(,) is typically more complicated than that for u(x,y).
The computational benefit, however, is accurate and noise-free
implementation of boundary conditions, not to mention the use
of much fewer grid points for the same level of physical
resolution.  Calculated solutions are displayed in physical
space with the assistance of custom color plotting routines.

Many commercial simulators calculate velocities and
other flow properties directly using rectangular (x,y) grids.
We emphasize that x-y coordinate lines do not conform to the
irregular curves defining near and farfield boundaries; also,
high grid densities imposed, say at the bottom of an eccentric
annulus, would require similarly high densities far away where
detailed resolution is unnecessary.  This results in large,
inefficient computing domains containing dead flow and
extremely large matrices.  In addition, “choppy” meshes lead
to noise, inaccuracy and instability.  Other simulators,
particularly general purpose codes used in computational fluid
dynamics (CFD), do support automatic and efficient “finite
element” or “finite volume” gridding.  However, they are not
portable in the sense that special licenses must be purchased
for users, thus incurring significant costs.  But more
importantly, they run proprietary, high-overhead “canned”
routines that cannot be adapted to new mathematical models
(such as the novel yield stress formulation introduced below)
and cannot be “tuned” to run optimally.  Also, they offer
inflexible output formats that are not easily integrated with
custom designed graphics and user interface software.  In this
paper, the objective is a fast, flexible and accurate solution
procedure that can be installed on all operating systems at
minimal cost.

We conceptually describe the grid generation process in
this paper.  Details are offered in the principal author’s books
on drilling and reservoir engineering, e.g., see Chin (1992,
2001, 2002). We reiterate the basic ideas here because they are
essential to understanding the solution approach and its
topological advantages.  Rather than dealing directly with =
(x,y) and = (x,y), we equivalently consider the inverse
functions x = x(,) and y = y(,) satisfying nonlinear
coupled partial differential equations, which are derived in the
form

(x
2 + y

2) x -2 (xx + yy) x  + (x
2 + y

2) x  = 0   (1)

(x
2 + y

2) y -2 (xx + yy) y  + (x
2 + y

2) y  = 0   (2)

where  and  are now independent (as opposed to dependent)
variables.  We aim to map the irregular flow domain of Fig. 2a
into the simple rectangular computational domain of Fig. 2b
where B1 and B2 are physically insignificant “branch cuts”
where single-valued solution constraints are enforced.



4 Wilson Chin and Xiaoying Zhuang AADE-11-NTCE-45

Pw

Cw

Cr

Pr

B2

B1

x

y

Fig. 2a – Irregular physical domain with inefficient rectangular
meshes.
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Fig. 2b – Irregular domain mapped to rectangular computational
space.
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Fig. 2c – Physical domain in boundary-conforming coordinates.

How are the foregoing equations used to create
numerical mappings?  Suppose that contour CW in Fig. 2a is to
map into = 0 of Fig. 2b.  The user first discretizes CW in Fig.
2a by penciling along it a sequence of dots chosen to represent
the curve.  If these are selected in an orderly, say, clockwise
fashion, they define the direction in which  increases.  Along
= 0, values of x and y are known (e.g., from measurement
on graph paper) as functions of .  Similarly, x and y values
along Cr are known as functions of  on = 1 of Fig. 2b.
These provide the boundary conditions for Eqs. 1 and 2, which
are augmented by single-valuedness constraints at arbitrarily
chosen branch cuts B1 and B2.  It is clear that this process is
easily automated by computer.

Conventionally, in grid generation, Eqs. 1 and 2 are
discretized by finite differences and solved by point or line
relaxation, starting with guesses for the dependent variables x
and y.  The problem is linearized by approximating all
nonlinear coefficients using values from earlier iterations.
Typically, several updates to Eq. 1 are taken, followed by
updates to Eq. 2, with this cycling process, often unstable,
repeated continuously until convergence.  Variations of the

approach are known, with 100 100 mesh systems in the -
plane requiring minutes of computing time.  Once x = x(,)
and y = y(,) are solved and tabulated as functions of  and
, physical coordinates are generated.  First,  is fixed; for
each node  along this , computed values of (x,y) pairs are
successively plotted in the x-y plane to produce the required
closed contour.  This procedure is repeated for all values of ,
until the entire family of closed curves is obtained, with limit
values  = 0 and = 1 again describing Cw and Cr.
Orthogonals are constructed by repeating the procedure, with
and  roles reversed.

This process provides the curvilinear mapping only.  The
equation describing the physics (e.g., the Navier-Stokes
equation for Newtonian flow or the general rheological
equations for non-Newtonian fluids) must be transformed into
(,) coordinates and solved.  In general, the transformed
governing equation, which is algebraically more complicated,
must be solved, and this procedure introduces its own
complications and numerical challenges.  The
“simplification,” however, lies not in the transformed
equation, which now contains mixed derivatives and variable
coefficients, but in the computational domain itself, because
this domain takes on a rectangular form amenable to simple,
noise-free numerical solution, requiring significantly fewer
nodal points for high resolution physical definition.

Again, existing solution methods solving x(,) and
y(,) stagger the solutions for Eqs. 1 and 2.  For example,
crude solutions are used to initialize the coefficients of Eq. 1,
and improvements to x(,) are obtained.  These are used to
evaluate the coefficients of Eq. 2, in order to obtain an
improved y(,); then, attention turns to Eq. 1 again, and so
on, until convergence is achieved.  Various over-relaxation
means are used to implement these iterations, e.g., point SOR,
line SLOR, line SOR with explicit damping, alternating-
direction-implicit, and multigrid, with varying degrees of
success.  Often these schemes diverge computationally.  In
any event, the staggering used introduces different artificial
time levels while iterating.  Classic numerical analysis,
however, suggests that faster convergence and improved
stability are possible by reducing the number of time levels.

A new approach to rapidly solve the nonlinear coupled
grid generation equations was proposed by the principal
author a decade ago and is based on a very simple idea.  This
idea has since been validated in numerous applications.
Consider first z + z = 0, for which zi,j  (zi-1,j + zi+1,j +
zi,j-1 + zi,j+1)/4 holds on constant grid systems (this is easily
derived using standard finite difference formulas).  This well-
known averaging law motivates the recursion formula zi,j

n =
(zi-1,j

n-1 + zi+1,j
n-1 + zi,j-1

n-1 + zi,j+1
n-1)/4 often used to

illustrate and develop multilevel iterative solutions; an
approximate, and even trivial solution, can be used to initialize
the calculations, and nonzero solutions are always produced
from nonzero boundary conditions.

But the well-known Gauss-Seidel method is fastest: as
soon as a new value of zi,j is calculated, its previous value is
discarded and overwritten by the new value.  This speed is
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accompanied by low memory requirements, since there is no
need to store both n and n-1 level solutions: only a single
array, zi,j itself, is required in programming.  The approach to
Eqs. 1 and 2 was motivated by the following idea.  Rather than
solving for x(,) and y(,) in a staggered, leap-frog manner,
is it possible to simultaneously update x and y in a similar
once-only manner?  Are convergence rates significantly
increased?  What formalism permits us to solve in Gauss-
Seidel fashion?  What are the programming implications?

Complex variables are used often in harmonic analysis
problems; for example, the real and imaginary parts of an
analytical function f(z), where z = x + i y, provide solutions
satisfying Laplace’s equation.  Here we use complex analysis
differently.  We define a dependent variable z by z(,) =
x(,) + i y(,), and then add Eq. 1 plus i times Eq. 2, in
order to obtain the net result (x

2 + y
2) z - 2 (xx +

yy) z + (x
2 + y

2) z = 0.  Now, the complex
conjugate of z is z*(,) = x(,) - i y(,), from which we
find that x = (z + z*)/2 and y = - i (z - z*)/2.  Substitution
produces the simple and equivalent one-equation result

(z z*) z - (zz* + z*z ) z + (z z*) z  = 0  (3)

This form yields significant advantages.  First, when z is
declared as a complex variable in a Fortran program, Eq. 3
represents, for all practical purposes, a single equation in
z(,).  There is no need to leap-frog between x and y
solutions now, since a single formula analogous to the
classical model zi,j = (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 is
easily written for the zi,j using Eq. 3 as the host equation.
Because both x and y are simultaneously resident in computer
memory, the extra time level present in staggered schemes is
completely eliminated, as in the Gauss-Seidel method.  In
thousands of test simulations conducted using point and line
relaxation, convergence times are shorter by orders of
magnitude relative to those obtained for cyclic solution
between x(,) and y(,).  Convergence appears to be
unconditional, monotonic and stable.  Because Eq. 3 is
nonlinear, von Neumann tests for exponential stability and
traditional estimates for convergence rate do not apply, but the
evidence for stability and convergence, while empirical,
remains very strong and convincing since we have always
computed useful grids in all test runs.

Iterative solution of nonlinear partial differential
equations.  Earlier we noted that uxx + uyy = - -1 P/z applies
to steady, two-dimensional, single-phase Newtonian flows for
borehole annuli having the most complicated shapes;
unfortunately, practical solutions cannot be accurately
obtained in (x,y) coordinates.  Here,  is a constant viscosity
and P/z is the applied pressure gradient in the z direction
assumed to be known.  This is the so-called Poisson equation
in mathematics, and students who have undertaken its study
realize that, despite the apparent simplicity offered by few
terms and complete linearity, useful solutions to the classical
model are nonetheless difficult to obtain.  When the
underlying fluid is nonlinear, this equation is replaced by Eq.
4, which is vastly more complicated, that is,

 (N u/y)/y  +  (N u/x)/x  = P/z                         (4)

where N now represents the “apparent viscosity” function.
This apparent viscosity is not constant, but a function of local
shear rates whose mathematical form depends on the
particular rheology assumed.  For example, in the case of
power law fluids modeled by an exponent “n” and a
consistency factor “K,” N takes the form N = K [ (u/y)2 +
(u/x)2 ](n-1)/2.  Even without solving the problem, it is
clear that, since u/x and u/y depend on the (unknown)
solution itself, any resulting apparent viscosity must vary
locally within the flow domain and depend on both geometric
details and flow rate.  Detailed computed solutions for annular
flows are presented in Chin (1992, 2001) where approximate
approaches to plug flow modeling are used.

Because Eq. 4 is now strongly nonlinear, the solution
process at its very heart must remain nonlinear.  This implies
that one cannot use simpler Newtonian solutions as leading
approximations and focus on higher order improvements to
them.  The basic solution method must retain a fully nonlinear
character in order that well known nonlinear relationships
between pressure gradient and volume flow rate evolve as part
of an iterative computational process.  As if this alone were
not complicated enough, we emphasize that it is the re-
expression of Eq. 4 in general (,) curvilinear coordinates,
not in simple (x,y) coordinates, that must be solved, and that
these coordinates and their metrics are only available
numerically.

The transformed equation now contains additional terms
as well as nonlinear coefficients that depend on the mapping.
Direct solutions are not numerically possible, but exact
solutions can be obtained iteratively.  In fact, finite difference
methods are used; the solutions are obtained line-by-line using
so-called “successive line over relaxation” (SLOR) schemes
written in the curvilinear coordinates.  These iterative
solutions are initialized by “close” analytical or numerical
solutions; the closer the initial guess, the more rapid the
convergence.  For typical problems, the efficient schemes
devised will produce a usable curvilinear grid in
approximately one second of computing time, while the
solution of the transformed momentum equation (when
pressure gradient is specified) may require two-to-three
seconds.  Again, detailed discussions and computed solutions
for power law and simple plug flows in highly eccentric
annuli, with practical applications, are given in Chin (1992,
2001).  The approximate plug flow methods developed in
these early researches are now obsolete and are replaced by
the following exact approach for yield stress description and
modeling.

Yield stress, plug zone size and shape modeling.  In
fluid flows where yield stresses exist, “plug zones” are to be
found.  These plugs move as solid bodies within the flowing
system.  For pipes with circular cross-sections and for
concentric annuli, it is possible to derive exact analytical
solutions for plug zone size and shape for Bingham plastics
(general solutions have, in fact, been derived for both
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geometries assuming Herschel-Bulkley fluids, and will be
presented separately).  For circular pipes, the cross-sectional
plug is simply a circle; for concentric annuli, of course, the
plug is a concentric ring.

The appearance of solid plugs within moving streams
results from the rheological model used by mathematicians to
idealize the physics.  If we denote the shear rate functional by
 = [ (u/y)2 + (u/x)2 ]1/2, this idealization can be written
formally as

N  = k n-1 + Syield/ if {1/2 trace (SS)}1/2  > 0

D = 0 if {1/2 trace (SS)}1/2  < 0                                 (5)

where the general extra stress tensor is denoted by  S and the
deformation tensor is given by D.  Here, 0 is the so-called
“yield stress.”  The discontinuous “if, then” character behind
Eq. 5 is responsible for the sudden transition from shear flow
to plug flow commonly quoted.  As noted, for flows with
azimuthal symmetry, that is, circular pipes and concentric
annuli, exact, rigorous mathematical solutions are in fact
possible.

For non-circular ducts and eccentric annuli, which
describe a large number of practical engineering problems, it
has not been possible to characterize plug zone size and shape,
even approximately.  Thus, the most significant petroleum
engineering flow problems important to both drilling and
cementing cannot be modeled at all, let alone accurately.  In
order to remedy this situation, we observe that the
discontinuity offered in Eq. 5 is really an artificial one,
introduced for, of all reasons, “simplicity.”  This unfortunately
leads to the solution difficulties noted.  In reality, practical
engineering flows do not suddenly turn from shear to plug
flow; the transition may be rapid, but it will occur
continuously over finite measurable distances.  We therefore
turn to more realistic rheological models which apply
continuously throughout the entire problem domain, and
which, if the underlying flow parameters permit, lead to plug
zones naturally during the solution process.

The conventional Herschel-Bulkley viscoplastic model,
which includes Bingham plastics as a special limit when the
exponent “n” is unity, requires that  = 0 + K(d/dt) n, if  > 0

and d/dt = 0 otherwise.  Here  is the shear stress, 0 is the
yield stress, K is the consistency factor, n is the exponent, and
d/dt is the shear rate.  As explained, this model is far from
perfect.  For example, both Herschel-Bulkley and Bingham
plastic models predict infinite viscosities in the limit of
vanishing shear rate, a fact that often leads to numerical
instabilities.  In addition, the behavior is not compatible with
conservation laws that govern many complex flows.

Fig. 3 – Extended Herschel-Bulkley law.

An alternative to the standard Herschel-Bulkley model is
the use of continuous functions which apply to sheared
regimes, and in addition, through and into the plug zone.  One
such example model is suggested by Souza, Mendez and
Dutra (2004), that is,  = {1 – exp(-0 d/dt /0)}{0 + K
(d/dt) n}, which would apply everywhere in the problem
domain.  The corresponding apparent viscosity N, for
numerical implementation in Eq. 4, is denoted by

 = /(d/dt)
   = {1 – exp(-0 d/dt /0)}{0/(d/dt) + K (d/dt) n-1}        (6)

The “apparent viscosity vs shear stress” and “shear stress vs
shear rate” diagrams, from Souza et al, are duplicated in Fig.
3.  What are the physical consequences of this model?  Eq. 6,
in fact, represents an “extended Herschel-Bulkley” model in
the following sense.  For infinite shear rates, one would
recover  = 0 + K (d/dt) n.  But for low shear rates, a simple
Taylor expansion leads to  {0(d/dt) /0}{0/(d/dt) + K
(d/dt) n-1}  0 where it is clear now that 0 represents a very
high viscosity for the plug zone.  The use of Eq. 6 in
numerical algorithms simplifies both formulation and coding
since internal boundaries and plug domains do not need to be
determined as part of the solution.  A single constitutive law
(as opposed to the use of two relationships in Eq. 5) applies
everywhere, thus simplifying computational logic; moreover,
the continuous function assumed also possesses continuous
derivatives everywhere and allows the use of standard
difference formulas.  Cumbersome numerical matching across
internal boundaries is completely avoided.  In a practical
computer program, the plug zone viscosity might be assumed,
for example, as 1,000 cp.  In fact, we choose high values of 0

which would additionally stabilize the numerical integration
schemes used.  This strategy is applied throughout this work,
both to the iterative relaxation schemes for steady-state
problems and to the transient integration schemes for more
complicated formulations.  This new approach was first
discussed in Chin and Zhuang (2010) for steady flows and has
since been incorporated in the fully transient annular flow
modeling approaches.

Borehole axis radius of curvature.  Borehole axis
curvature is important to ultra-deepwater drilling, especially in
short and medium radius turning applications.  Several aspects
of cuttings transport and debris removal are not completely
understood insofar as centrifugal effects are concerned and a



AADE-11-NTCE-45 Effect of Rotation on Flowrate and Pressure Gradient in Eccentric Holes 7

study of curvature effects contributes to an understanding of
their influence on stress fields.  Also, bends in pipelines and
annuli are interesting because they are associated with losses;
that is, to maintain a prescribed volume flow rate, a greater
pressure drop is required in pipes with bends than those
without.  This is true because the viscous stresses acting along
pipe walls are higher.  The modeling of borehole axis
curvature effects for problems involving noncircular ducts and
highly eccentric annuli containing non-Newtonian fluids was
first addressed in Chin (2001), where detailed derivations,
equations and computed examples are given.  Essentially, it is
shown how, by replacing “1/  P/z” with an inertially
corrected “1/  P/z - 1/R u/r + u/R

2” where R is the
radius of curvature, the effective pressure gradient accounting
for centrifugal effects is properly and stably modeled.  This
model is incorporated into Eq. 4 and a radius of curvature
entry appears in the software menu in Fig. 4a at the bottom
left.

Steady and Transient Formulations:
User Interface and Physical Modeling Capabilities

Simulators for two-dimensional steady and transient flow
are described in this paper, applicable to single-phase,
Herschel-Bulkley fluids, which may also be operated in
Newtonian, power law and Bingham plastic modes.  For
Bingham plastic and Herschel-Bulkley fluids, the generalized
rheological approach is used and plug zone sizes and shapes
are determined automatically whatever the eccentric annular
geometry.  The intuitive user interface shown in Fig. 4a
requires only an elementary understanding of engineering
vocabulary and the simulator may be operated with minimal
training.  Annular geometry is defined by entering center
coordinates and radii in the upper left menu.  Clicking ‘Show
Annulus’ provides an instantaneous display of the geometry
assumed, plus a typical curvilinear grid, e.g., as illustrated in
Fig. 4b, whose mesh density may be coarsened or refined at
run-time.  In addition, online editing utilities allow the
baseline eccentric circles to be edited for washout, cuttings
bed or fracture modification effects.

Fig. 4a – Steady flow user interface.

Fig. 4b – Quick annular geometry and curvilinear grid displays.

Rheological parameters for the general Herschel-Bulkley
fluid are entered into the input boxes at the upper right of Fig.
4a.  Four model are possible by choosing the values of n, K
and 0 appropriately.  Newtonian fluids require n = 1 and 0 =
0, while power law fluids allow general n with vanishing 0.
On the other hand, Bingham plastics require n = 1 and non-
vanishing 0, while all three parameters may be generally
assumed in the case of Herschel-Bulkley fluids.  Fig. 4c also
shows two utilities for n and K determination in the case of
power law fluids, that is, assuming Fann dial readings or
viscosity and shear rate data are available.

Fig. 4c – Determining n and K for power law fluids.

It is clear from Figs. 4a – 4c that several important
auxiliary capabilities have been built into the overall
algorithm.  First, the axis of the borehole need not be straight;
it may be curved, with any constant value for radius of
curvature, to model short, medium and large radius turning of
the borehole in offshore applications.  This properly accounts
for centrifugal effects which will affect the relationship
between pressure gradient and volume flow rate.

Second, the drillpipe may move in either direction



8 Wilson Chin and Xiaoying Zhuang AADE-11-NTCE-45

relative to the borehole, that is, constant speed translational
motion is permitted.  In the simplest application, the drillstring
penetrates the formation, moves relative to the borehole  at
constant positive or negative speed, and induces a purely two-
dimensional flow everywhere; the value of this speed is
entered into the bottom left input box of Fig. 4a.  This
capability also supports steady-state swab-surge analysis, with
the mudpumps turned off or on and continuously running, as
will be illustrated in examples later.  A simple ‘Worksheet’ is
loaded by clicking ‘Swab-surge (steady)’ in Fig. 4c, which
prompts the user for tripping mode and speed.  The positive or
negative induced volume flow rate is calculated and added to
the flow rate specified at the mud pump.  Two calculation
modes described in the next paragraph was developed for
swab-surge and other drilling and cementing applications.

The option boxes immediately above the ‘Control Panel’
in Fig. 4a show how two computational modes are supported.
In the first, the applied axial pressure gradient is specified and
volume flow rate (together with detailed field solutions for all
physical properties) is calculated.  In the second, volume flow
rate is specified and pressure gradient (together with all field
properties again) is determined iteratively.  The algorithm
involves some subtlety because, as will be described in the
application for swab-surge, the directions for drillpipe motion
and net volume flow rate need not be correlated.  For the
“flow rate specified” mode, an initial pressure gradient is
assumed for which a test rate is calculated and compared
against the target rate; if the results do not satisfy a tolerance
of 1%, a half-step correction procedure is applied to the test
gradient and the calculations are repeated to convergence.
Typically, the “pressure gradient specified” mode requires 2-3
seconds or less for a complete solution, while the “flow rate
specified” mode may require up to ten seconds.

Fig. 4d – Transient flow user interface.

The foregoing remarks, focusing on the screen shot in
Fig. 4a, apply to the steady flow simulator.  The corresponding

user interface for transient incompressible flow is shown in
Fig. 4d.  Now, instead of Eq. 4, fully unsteady effects are
computed from its transient extension, but rewritten in custom
curvilinear coordinates applicable to the particular geometry
under consideration.  The above menu contains similar
geometry and rheology definition modules, however, general,
coupled, transient functions for pipe or casing axial
reciprocation, inner circle rotation and pressure gradient are
permitted.  Additional input boxes for time step selection to
facilitate numerical time integration are shown.  Importantly, a
database of prior runs is offered for user convenience and
education.  Clicking on a named entry at the top right of Fig.
4d automatically fills in all relevant input boxes and launches
any sub-applications programs that are required.  Users may
edit numerical values and re-run any simulations available in
the database.  Also, all graphical capabilities described in this
paper for steady flow are also available for unsteady flows.

Color displays of engineering properties.  In order to
make the mathematical models useful, every effort was
expended to automate the display of important field quantities
using two and three-dimensional color graphics.  Use of the
presentation tools is completely transparent to the engineer.
An ‘Install Graphics’ button installs all required software
quickly in a single pass; in addition, user training in operating
the integrated graphical capabilities is not required.  On
convergence of the solution, a message box (supplemented
with speech output and suggestions) summarizes basic
pressure gradient and flow rate relationships.

The menu in Fig. 5a indicates that text output and color
displays for different physical quantities are available for
display.  These quantities are post-processed from the velocity
solution and made available for important engineering
reasons.  For example, Chin (1992, 2001) shows that apparent
viscosity is vital to evaluating spotting fluid effectiveness in
freeing stuck pipe.  On the other hand, viscous stress (at the
cuttings bed) is important to studying hole cleaning in
horizontal and deviated wells, while velocity and viscosity
play dominant roles in vertical well cuttings transport.  A
complete discussion, together with validations from a number
of experimental investigations, is offered in Chin (1992,
2001).

Fig. 5a – Graphical solution display options.
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Fig. 5b displays results for axial velocity, apparent
viscosity, shear rate, viscous stress, dissipation function and
Stokes product in simple “planar plots.”  For the all-important
velocity results, additional displays using three-dimensional
color capabilities are offered as indicated in Fig. 5c.  These
capabilities, which include contour plots and mouse-rotatable
perspective displays, are available for all mesh combinations,
ranging from coarse to fine, selected by the user at run-time.
These tools, plus text output, are useful in supporting detailed
report generation.

Fig. 5b – Planar color displays of key physical field quantities.

Fig. 5c – Three-dimensional, color displays (contour maps and
mouse-rotatable perspective views).

Modeling borehole geometric irregularities.  For
convenience, the main input screen in Fig. 4a accepts off-
centered circles only.  When center coordinates and radii are
entered for inner and outer circles, an information box
displays the calculated value for dimensionless eccentricity, to
provide a useful reference point for drilling applications.
Built-in error checking prevents circle cross-overs.  At run-
time, both inner and outer circle coordinates may be changed
at the user’s option.  As shown in Fig. 6a below, existing
contour coordinates are displayed, which may be modified
without restriction.  The changes elected for the example
shown invoke changes to seven points only, in order to
describe a simple washout; this convenient online editing tool
can be used to draw washouts, cuttings beds and fracture
indentations of any shape.  While Fig. 6a provides a simple
“planar plot” of velocity, Fig. 6b provides more detailed three-
dimensional resolution.  Interestingly, for the simulation
shown, the presence of the washout allows a 30% increase in
flow rate for the same pressure gradient.  General conclusions
are not possible, and appropriate results must be made on a
case-by-case basis.

Fig. 6a – Modifying eccentric circle at run-time for washouts.
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Fig. 6b – Color display of velocity field with washout.

Yield stress modeling.  As noted earlier, yield stress
modeling in eccentric annuli is important to both drilling and
cementing applications.  The use of the generalized Herschel-
Bulkley constitutive model correctly predicts plug zone size
and shape for all geometries.  Because a continuous flow
model is used, which guides the evolution of a single
continuous velocity field, the computational difficulties
associated with distinct internal boundaries and infinite
viscosities are avoided.  The method, we emphasize, will
predict realistic plug zones with rapid gradients when they
exist, as shown in Fig. 7a.

More interesting results are shown in Fig. 7b, in which
plug zones for (1) a stationary pipe, (2) a pipe moving
opposite to the direction of net flow, and (3) a pipe moving in
the same direction of the main flow, are shown.  Such
computations are important in swab-surge applications and
accurate pressure modeling.  Plug zones associated with yield
stress, of course, are important to understanding cuttings
transport in drilling and fluid mixing in cementing.  Again, no
special procedures are required on the part of the user, as all
dynamical features are computed automatically for both yield
stress and non-yield fluids.  Computation of plug zone flows
requires no additional effort in terms of processing time and
memory resources.

Fig. 7a – Typical velocity results for eccentric annulus
with plug flow.

Fig. 7b – Non-Newtonian plug flow velocity profiles with
stationary pipe (left), pipe moving opposite to flow (middle), and

pipe moving with flow (right).

Rotating Flow Theory, Solution and Applications

Examples 2-1 and 2-2 provide scientific and
mathematically oriented discussions (plus governing partial
differential equations) that explain the apparent conflicts noted
in the Abstract.  Why does the early literature, that is,
solutions developed largely by very eminent mathematicians
and scientists, state that the effect of rotation (with pressure
gradient fixed) is an increase in flow rate, a conclusion at the
time supported by field observation?  And why is the opposite
quoted in almost all recent works?

In short, the early solutions and applications applied to
concentric annular flow, for which the nonlinear convective
terms in the axial momentum equation vanish identically.
However, recent field observations apply to deviated and
horizontal wells which host eccentric annular geometries, for
which special terms that depend on rotation are always
retained and never vanish.  This was noted early on in the
research, and again, the theoretical development is given in
Examples 2-1 and 2-2.

These ideas can be developed further and provide the
groundwork for steady and unsteady flows with and without
rotation for general eccentric annuli and non-Newtonian
rheologies.  This is pursued in curvilinear coordinates to
support the methodology used for the calculations.  However,
for the second part of the transient flow presentation, eight
detailed computations are given, namely, Example 7-5 to
Example 7-12.

The presentation provides all the details of the theoretical
and numerical models, plus highly validated computed
examples, and further, demonstrate that realistic flows such as
those encountered in field operations can be computed stably,
quickly, and with little user experience through the intuitive
software interface developed.

More importantly are new capabilities for managed
pressure drilling implications in well control.  Conventionally,
pressure at the drillbit (and, for that matter, along the entire
length of the borehole) is controlled by adjusting mud
rheology (by changing the mud), by controlling pumping
speeds (to affect dynamic pressure loss), or by changing the
pressure level at the surface choke, or all of the above.  This
work demonstrates that pipe rotation affects pressure drop
(when rate is fixed) or rate (when pressure gradient is given)
and we have explained why the calculations work.  This
implies that pipe rotation provides still another weapon in the
arsenal to control well safety and formation integrity.  Not all
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wells can or should be controlled by adjusting rotation, of
course, but the option now exists – and the means for using it
as a practical tool that can be modeled by job planning
software based on sound physical principles is available.

Part I:  Theory

For readers who wish to proceed directly to the
theoretical conclusions, explained in “plain English” without
mathematics, please turn to the summary on Pages 15-16.

Example 2-1.    Newtonian flow circular cylindrical
coordinates.

In this first example, we study simple Newtonian flows
for which the laminar viscosity µ is constant.  In practice,
viscosity does depend on pressure and temperature, but we
restrict the discussion to simpler processes for which these
dependencies do not arise – by “constant,” we imply that
viscosity is not affected by the size or shape of the vessel, or
by the applied pressure gradient or the flow rate, and that its
value can be measured unambiguously in a simple viscometer
– properties not applicable to flows of non-Newtonian fluids.
In particular, we will explore the properties of Newtonian
flows written in circular cylindrical coordinates – and simple
visual inspections of the equations do lead to interesting and
important conclusions.  The so-called Navier-Stokes equations
that apply are derived in standard textbooks, e.g., Schlichting
(1968).  When “r,” “” and “z” are radial, azimuthal and axial
coordinates, vr, v and vz are Eulerian velocities in these
directions, Fr, F and Fz are body forces in the same
directions, is the constant fluid density, p is pressure and t is
time, the following general partial differential equations can
be derived.

Momentum equation in r: (2-1-1)

vr /t + vr vr /r + v/r vr /- v2/r + vz vr /z} = Fr  -
p/r + {

2vr /r2 + 1/r vr /r - vr /r
2 + 1/r2 

2vr /
2 - 2/r2

v/ + 
2vr /z

2}

Momentum equation in : (2-1-2)

v/t + vr v/r + v/r v/+ vrv/r + vz v/z} = F-
1/r p/ + {

2v/r2 + 1/r v/r - v/r
2 + 1/r2 

2v/
2 +

2/r2 vr / + 
2v/z

2}

Momentum equation in z: (2-1-3)

vz /t + vr vz /r + v/r vz /+ vz vz /z} = Fz  - p/z

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2 + 

2vz /z
2}         

Mass continuity equation:

vr /r + vr /r + 1/r v/+ vz /z = 0 (2-1-4)

These define four equations for the four unknowns vr, v,
vz and p.  General solutions to these nonlinearly coupled
partial differential equations do not exist.  We emphasize that,
while the above formulation is written in circular cylindrical
coordinates, it does apply to flows past non-circular
geometries (in principle, the flow through a star-shaped duct,

for instance, can be solved, although in practice, the solution
would be extremely awkward).  Understanding this, we ask
what general conclusions can be drawn for concentric versus
eccentric annular flows.  For the remainder of this section, we
will ignore the effects of externally imposed body forces, e.g.,
gravity, electric charge, etc.

Concentric, steady, two-dimensional flows without
influx.  We first address the most commonly formulated
problem, namely, concentric annular flows without azimuthal
dependence, so that / = 0 (this does not require that v = 0);
flows without fluid influx or outflux, for which vr = 0; then,
those for which the problem is steady, so that /t = 0; and
finally, we invoke the restriction to purely two-dimensional
flows whose properties do not vary from one cross-section to
the next, so that /z = 0.  When these conditions are satisfied,
the foregoing momentum equations reduce to Equations 2-1-5,
2-1-6 and 2-1-7, while Equation 2-1-4 for mass conservation
is identically satisfied.

Momentum equation in r:

p/r = v
2/r  (2-1-5)

Momentum equation in :


2v/r2 + 1/r v/r - v/r

2 = 0 (2-1-6)

Momentum equation in z: 


2vz /r2 + 1/r vz /r = (1/)  p/z  (2-1-7)

We will provide mathematical and software solutions to
these later, but for now, we emphasize their general properties.
The linear azimuthal velocity field v is determined by solving
Equation 2-1-6 subject to constant values at the radial
boundaries.  At the inner pipe or casing surface, the speed is
determined by rotation speed and radius, while at the outer
annular wall, the speed is zero.  Notice that the solution for v
does not involve p/z.  In other words, the azimuthal motion
is simply one induced by “dragging” at the inner pipe surface.

Now consider the solution for axial velocity found by the
solution of Equation 2-1-7 subject to constant speeds at the
radial boundaries, e.g., a zero or non-zero translational speed
at the inner surface and zero at the outer wall.  The solution
does not involve the rotational speed, and includes  and the
applied pressure gradient p/z only to the extent that they
appear in the lumped form (1/)  p/z.  In conclusion, the
azimuthal motion does not affect axial flow and axial motion
does not influence azimuthal flow: the two are dynamically
independent.  Only when v is available is Equation 2-1-5
used, and then, only in computing a radial pressure gradient
that arises from centrifugal effects.  It is remarkable that such
general properties can be derived simply by visual inspection
without any knowledge of partial differential equations.

Eccentric, steady, two-dimensional flow.  Now let us
repeat this analysis without the assumption calling for
concentric flow, that is, we no longer assume that / = 0.  In
doing so, we may deal with cross-sections that contain
eccentric circles, but the eccentric annuli may well contain
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asymmetric washouts at the outer contour and arbitrary
cuttings beds at the bottom contour.  We will assume that /t
=  /z = 0 but no longer require vr = 0. Then, we have

Momentum equation in r: (2-1-8)
 vr vr /r + v/r vr /- v2/r } =- p/r

+ {
2vr /r2 + 1/r vr /r - vr /r

2 + 1/r2 
2vr /

2 - 2/r2 v/}

Momentum equation in : (2-1-9)

vr v/r + v/r v/+ vrv/r } = - 1/r p/
+{

2v/r2 +1/r v/r - v/r
2 + 1/r2 

2v/
2 + 2/r2 vr /}

Momentum equation in z: (2-1-10)
vr vz /r + v/r vz /} = - p/z

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2 }         

Mass continuity equation:
vr /r + vr /r + 1/r v/ = 0 (2-1-11)

These remain four partial differential equations in four
unknowns whereas Equations 2-1-6 and 2-1-7 are coupled,
linear, ordinary differential equations.  Hence, the solutions
are extremely difficult to obtain.  Now, we have not yet
specified an annular geometry, nor have we defined the r-
coordinate system that applies to the problem.  Nonetheless,
we can assume in a dimensionless sense that v >> vr so that vr

can be ignored in a first approximation.  The main focus is the
resulting momentum equation in z, which now takes the form


2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2  (2-1-12)

 (1/) p/z + (/)(v/r) vz /

This should be compared with the earlier result in
Equation 2-1-7, that is, 

2vz /r2 + 1/r vz /r = (1/)  p/z .
The left-side now includes an additional term “1/r2 

2vz /
2.”

In fact, the left-hand operator can be written in the more
familiar form “

2vz /x2 + 
2vz /y2 ” using rectangular

coordinates, from which we recognize the standard Laplace
operator.  However, it is the right-side that is extremely
interesting.  No longer is the effective pressure gradient
simply given by the constant value (1/) p/z.  Instead, this
term is modified by the correction (/)(v/r) vz /, which
we emphasize is proportional to the fluid density and the inner
pipe rotation rate and is inversely proportional to viscosity.

What are the physical consequence of this modification?
In the concentric problem, the total volume flow rate could be
determined by integrating the product of vz (from Equation 2-
1-7) and “2r dr” over the annular domain.  The result is
proportional to (1/) p/z, with the constant of
proportionality depending only on geometry.  The flow rate
does not depend on rotation speed.  When eccentricity is
permitted, however, the effects of pipe rotation are coupled
nonlinearly.  In addition, the correction to (1/) p/z now
depends on the lumped parameter “mud weight  rpm /
viscosity” in a nontrivial manner.  The correction importantly
depends on the spatial coordinates r and  as well as the yet-
to-be-determined solution vz(r,): it is spatially variable and

volume flow rate will no longer depend on (1/) p/z alone.
Thus, the effective pressure gradient changes from what we
have in the concentric case.  The flow rate will generally be
different, and computations show that, for the same , p/z
and rpm, the effect of eccentricity is a strong reduction in
flow.  Note that this conclusion is obtained for a Newtonian
fluid having constant viscosity.  When non-Newtonian effects
are considered, the competing effects of shear-thinning will
enter and these will be discussed separately in Example 2-2.

x

y y

x



v(0)/v(0)/

Axial velocity
v(0) maximum

Figure 2-1-1.  Location of axial velocity maximum in non-
rotating flow.

Furthermore, because the correction also depends on
vvz /, we expect that the location of the maximum in
axial velocity (in an eccentric annulus with left-right
symmetry) found at the wide side along the vertical line of
symmetry, e.g., as shown at the left of Figure 2-1-1, will
displace azimuthally, and it does, as a later explanation and all
subsequent calculations will show.

It suffices to emphasize that eccentricity and rotation
effects even for basic Newtonian fluids are extremely subtle.
However, simple mathematical constructs can be devised to
explore some of these subtleties and to facilitate fast numerical
solutions.  We explain an important one in the context of
Equation 2-1-12 for vz which we rewrite without the subscript
“z” for clarity.  In mixed coordinates, we have


2v/x2 + 

2v /y
2  (1/) p/z + (/)(v/r) v / (2-1-13)

Now, we separate “eccentric, non-rotating” from
“eccentric, rotating” effects by isolating the inertia-dependent
(/)(v/r) v /.  In the language of mathematics, we
introduce a “regular perturbation expansion” such that v = v(0)

+ v(1) + … in which the zeroth solution represents leading
order concentric non-rotating effects and the first perturbation
to it includes all others.  Mathematical books that introduce
this subject include the well known research monographs by
Van Dyke (1964), Cole (1968) and Nayfeh (1973).  If we next
assume that


2v(0) /x2 + 

2v(0) /y
2 = (1/) p/z (2-1-14)

then subtraction of Equation 2-1-14 from Equation 2-1-13
with the series substitution leads to


2v(1) /x2 + 

2v(1)  /y
2   (/)(v/r) v(0)

 / (2-1-15)

Now, the concentric solution to Equation 2-1-14, or
Equation 2-1-7, is just the classical Poiseuille pipe flow
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formula available in the general literature, e.g., Schlichting
(1968).  However, Equation 2-1-14 applies to eccentric
problems too, and its exact numerical solution for arbitrary
geometries the subject of this paper and one of the simulators.   

But we do not need to solve it to understand its
implications.  We have shown an eccentric annulus at the left
of Figure 2-1-1 with left-right symmetry.  We can imagine that
we now have obtained a straight, non-rotating, “out of the
page” axial flow solution v(0) applicable to the left diagram.
The location of maximum axial speed is shown at the gray dot.
With the  convention highlighted, it is clear that v(0)

 /
increases at the right of the line of symmetry while it
decreases at the left.  Next, observe that the sign of the
azimuthal velocity v in Equation 2-1-15 cannot change.
Thus,  (/)(v/r) v(0)

 /, which functions as an effective
pressure gradient for the disturbance axial flow v(1), is
antisymmetric with respect to the vertical line of symmetry: it
subtracts flow on one side and adds at the other.  This
effective pressure gradient is variable throughout the annular
cross-section.  This driver, which depends on the solution to
the azimuthal problem, affects total flow rate in a nontrivial
way, although for small values of “mud weight  rpm /
viscosity,” it is clear that the solution is proportional to it with
the v(1) field again being antisymmetric.  This antisymmetry
means that “mud weight  rpm / viscosity” does not
significantly affect total flow rate if it is small.  However,
when it is large, the symmetry and antisymmetry ideas may
break down.  It is also clear how, in the presence of unsteady
effects, arguments like those offered above are not possible.

We note that, while we have provided useful discussions
on rotation and eccentricity, the numerical solution for steady
rotating flows in eccentric domains, even under the
assumption of simplified Newtonian flow, has proven to be
challenging.  A limited number of papers on the subject have
been published by several authors, but these have offered few
formulation and numerical details, and have declined to
discuss computing times and numerical stability properties.
The author, in fact, has written a steady, rotating flow solver
for non-Newtonian eccentric annular flows, which converges
for vz under restrictive conditions. The controlling “mud
weight  rpm / viscosity” parameter, for the larger values
characteristic of those parameters used in practical drilling and
cementing, always leads to numerical instability.  On the other
hand, the perturbation problem for vz

(1) could be solved with
unconditional stability; however, the linearization used clearly
does not apply physically to high values of “mud weight 
rpm / viscosity.”  In this paper, however, steady-state flows
with rotation are successfully solved by integrating the
transient equations asymptotically in time until steady
conditions are reached using a fast solver.

Example 2-2.  Shear-thinning and non-Newtonian
flow effects.

In the previous example, we studied Newtonian flows for
which viscosity always remained constant to focus on the
effects of rotation and eccentricity alone.  Here we consider
non-Newtonian fluids which generally exhibit shear-thinning,
but do not discuss rotation, so that we remove the convective
effects of inertia.   Whereas before, the use of circular
cylindrical coordinates facilitated an understanding of pipe
rotation, we now introduce rectangular or Cartesian
coordinates to assist in explanations of non-Newtonian
viscosity effects.  We consider here eccentric annular flows
formed by general closed curves (which need not be circular),
but for simplicity, restrict the discussion to steady, two-
dimensional, single-phase flows.  These assumptions are
removed later.

The equations for general fluid motions in three
dimensions are available from many excellent textbooks (Bird,
Stewart and Lightfoot, 1960; Streeter, 1961; Schlichting,
1968; and, Slattery, 1981).  We cite these without proof.  For
problems without inner pipe rotation, it turns out that their
rectangular form is most suitable in deriving curvilinear
coordinate transforms – as we later show, the relevant starting
point for rotation effects is cylindrical radial coordinates.

Governing equations.  Let u, v and w denote Eulerian
fluid velocities, and Fz, Fy and Fx denote body forces, in the
z, y and x directions, respectively, where (z,y,x) are Cartesian
coordinates.  Also, let  be the constant fluid density and p be
the pressure; we denote by Szz, Syy, Sxx, Szy,  Syz, Sxz, Szx,
Syx and Sxy the nine elements of the general extra stress
tensor S.  If t is time and ’s represent partial derivatives, the
complete equations of motion obtained from Newton’s law
and mass conservation are,

Momentum equation in z:

 (u/t + u u/z + v u/y + w u/x)  =
= Fz - p/z + Szz/z + Szy/y + Szx/x                (2-2-1)

Momentum equation in y:

 (v/t + u v/z + v v/y + w v/x)  =
= Fy - p/y + Syz/z + Syy/y + Syx/x               (2-2-2)

Momentum equation in x:

 (w/t + u w/z + v w/y + w w/x)  =
= Fx - p/x + Sxz/z + Sxy/y + Sxx/x               (2-2-3)

Mass continuity equation:

u/z + v/y + w/x = 0                                          (2-2-4)

Simple rheological models.  These equations apply to
all Newtonian and non-Newtonian fluids.  In continuum
mechanics, the most common class of empirical models for
incompressible, isotropic fluids assumes that S can be related
to the rate of deformation tensor D by a relationship of the
form

S = 2 N() D                                                       (2-2-5)
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where the elements of D are

Dzz =  u/z                                               (2-2-6)
Dyy =  v/y                                                       (2-2-7)
Dxx =  w/x                                                      (2-2-8)
Dzy = Dyz = (u/y + v/z)/2                                   (2-2-9)
Dzx = Dxz = (u/x + w/z)/2                                  (2-2-10)
Dyx = Dxy = (v/x + w/y)/2                                  (2-2-11)

In Equation 2-2-5, N() is the “apparent viscosity” satisfying

N()  >  0                                                        (2-2-12)

(z,y,x) being a scalar functional of u, v and w defined by the
tensor operation

 = { 2 trace (DD) }1/2                                         (2-2-13)

Unlike the constant laminar viscosity  in classical
Newtonian flow, we will demonstrate that the apparent
viscosity depends on the details of the particular problem
being considered, e.g., the rheological model used, the exact
annular geometry occupied by the fluid, the applied pressure
gradient or the net volume flow rate.  Also, it varies with the
position (z,y,x) in the annular domain.  Thus, single
measurements obtained from viscometers are usually not
meaningful in practice.  In fact, inferences can be very
misleading.

Examples.  To fix ideas, consider the simple but
important Ostwald-de Waele model for two-parameter “power
law” fluids, for which

N() = K n-1                                                   (2-2-14a)

where the “consistency factor” K and the “fluid exponent” n
are constants.  Such power law fluids are “pseudoplastic”
when 0 < n < 1, Newtonian when n = 1, and “dilatant” when n
> 1.  Most drilling fluids are pseudoplastic.  In the limit (n = 1,
K = µ), Equation 2-2-14a reduces to the Newtonian model with
N() = µ, where µ is the constant laminar viscosity; in this
classical limit, stress is directly proportional to the rate of
strain.  Only for Newtonian flows is volume flow rate a linear
function of applied pressure gradient and inversely
proportional to .

Power law and Newtonian fluids respond instantaneously
to applied pressure and stress.  But if the fluid behaves as a
rigid solid until the net applied stresses have exceeded some
known critical yield value, say Syield, then Equation 2-2-14a
can be generalized by writing

N()  = K n-1 + Syield/ if {1/2 trace (SS)}1/2  > Syield
D = 0 if {1/2 trace (SS)}1/2  < Syield                      (2-2-14b)

In this form, Equation 2-2-14b rigorously describes the
Herschel-Bulkley fluid.  When the limit (n=1, K = µ) is taken,
the first equation becomes

N()  = µ  + Syield/ if {1/2 trace (SS)}1/2  > Syield     (2-2-14c)

This is the Bingham plastic model, where µ is now the “plastic
viscosity.”  For Herschel-Bulkley and Bingham plastic flows
in circular pipes, exact analytical solutions can be developed
for velocity distribution, plug zone radius, and total flow rate

(these limits include Newtonian and power law fluids).
Analogous solutions are available for flows between parallel
plates.  Exact solutions for concentric annuli  are available in
closed analytical form and used to validate numerical flow
models.

For illustrative purposes, we examine a limit of two-
dimensional power law flows, where the axial velocity u(y,x)
does not depend on the axial coordinate z.  In the absence of
rotation, the velocities v and w in the cross-plane satisfy v = w
= 0, so that the functional  in Equation 2-2-14a takes the
form

 = [ (u/y)2 + (u/x)2 ]1/2                                    (2-2-15)

and Equation 2-2-14a becomes

N() = K [ (u/y)2 + (u/x)2 ](n-1)/2                     (2-2-16)

The apparent viscosity reduces to the conventional N() = K
(u/y)(n-1) formula for one-dimensional, parallel plate and
“slot flow” flows considered in the literature.  When both
independent variables y and x for the cross-section are present,
as in the case for eccentric annular flow, significant
mathematical difficulty arises.  For one, the ordinary
differential equation for annular velocity in simple concentric
geometries becomes a partial differential equation.  And
whereas the former requires boundary conditions at two
points, the partial differential equation requires no-slip
boundary conditions imposed along two arbitrarily closed
curves.  The nonlinearity of the governing equation and the
irregular annular geometry only compound these difficulties.
Despite these, the resulting problem is simple in a sense.  The
momentum equations for v and w vanish identically and that
for mass conservation implies that u = u(y,x) only.  The single
remaining equation is

Szy/y  + Szx/x  = P/z = constant                     (2-2-17)

where the constant pressure gradient P/z is prescribed.  This
is to be compared to the simpler Equation 2-1-7.  Since S =
2ND, this reduces to

 (N u/y)/y  +  (N u/x)/x  = P/z               (2-2-18)

Substitution of Equation 2-2-16 shows that Equation 2-2-18
can be written as a nonlinear Poisson equation, that is, as
Equation 2-1-19, in the form

2u/y2 + 2u/x2 = [P/z + (1-n)N()(uy
2uyy

+2uyuxuyx +ux
2uxx)/(uy

2 + ux
2)] / N()             (2-2-19)

which is to be compared with Equation 2-1-14.  This equation,
together with extensions for rotation and complicated
rheological effects, is solved exactly in the software models.
The only purpose in writing down explicitly here is to provide
a “live” example showing why nonlinear effects are
complicated.

The Newtonian limit with n = 1 reduces Equation 2-2-19
to the classical Poisson equation 2u/y2 + 2u/x2 = (1/)
P/z with several important properties.  For example,
doubling pressure gradient while doubling the viscosity leaves
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u(y,x) unchanged: only the lumped driver (1/) P/z appears.
And, for instance, doubling P/z with  constant will double
u everywhere, a property obvious from simple rescaling.
Also,  is just the quantity measured in a viscometer, and its
value remains unchanged for all pressure gradients and flow
cross-sections.

However, when n is not unity, the “mess” at the right of
Equation 2-2-19 remains.  Casual observation leads us to
conclude, for example, that doubling the pressure gradient will
do something unclear, but what, is uncertain.  Because the
divisor of P/z is not just a constant “,” but a complicated
function which, because it depends on the as-yet unknown
solution u(y,x), the so-called “apparent viscosity” is unknown.
In fact, it will vary from problem to problem, and it will
depend on the applied pressure gradient, plus the size and
shape of the vessel, and it will be variable throughout the flow
cross-section.  Hence, we have the origin of the terms “shear-
thickening” and “shear-thinning.”  Shear-thickening and
shear-thinning fluids are non-Newtonian, as their viscosities
increase or decrease, respectively, as the applied shearing
stress increases.  “Silly Putty” is shear-thickening, while
ketchup is shear-thinning.

It is important to note, from Equation 2-2-17, that fluid
density  completely disappears in this steady flow without
rotation.  However, it is important that, from Example 2-1,
density remains important when the flow rotates because the
nonlinear convective terms do not vanish.  It also goes without
saying that density effects are all-important in transient
analysis because inertia is important.  We will demonstrate
later that steady flows can be computed from unsteady
algorithms using small densities for rapid convergence – but,
this strategy is applicable only when there is no underlying
pipe rotation.

 Only n and K (and not “”) are “absolutes” for power
law flow modeling which can be obtained from viscometer
measurements.  The foregoing difficulties apply not just to
power law fluids, but to all non-Newtonian fluids, with or
without yield stress.  When yield stresses are present, other
complications arise, e.g., the inability to identify a priori the
size and shape of the plug zone means that such problems
cannot be solved for practical annular geometries.  We do,
fortunately, offer a rigorous solution to this problem later.

In summary, we offer several general principles from the
discussions of Examples 2-1 and 2-2.  In particular,

 In Newtonian flow, the viscosity is a constant of the
motion (barring changes due to pressure and temperature)
which is unambiguously determined from viscometer
measurement.

 In non-rotating Newtonian flow, the lumped quantity
(1/) p/z controls the dynamics, and changes to it will
proportionally change u(y,z) everywhere – thus, faster
testing with inexpensive fluids, together with simple
arithmetic extrapolation, can be used in engineering
design.

 For concentric annuli in steady Newtonian rotating flow,
azimuthal velocities do not depend on pressure gradient,
and axial flows are unaffected by rotation: the two are
dynamically uncoupled.

 Annular eccentricity introduces changes to the applied
pressure gradient that are variable throughout the flow
domain (the velocity likewise scales differently at
different cross-sectional locations) when rotation is
allowed.  Their magnitudes are proportional to the
product “density  rpm / viscosity.”  This effect generally
decreases the flow rate (as rotation speed increases) for a
fixed pressure gradient – this nontrivial modification
applies even to simple Newtonian fluids without shear-
thinning.

 Non-Newtonian fluids (even without rotation and three-
dimensionality) exhibit shear-thickening and shear-
thinning properties.  In a concentric annulus with a
rotating inner pipe, drilling fluid viscosity will decrease
due to azimuthal motion so that net flow rate increases
relative to the non-rotating case assuming that pressure
gradient is fixed.  Complications arise when this is
countered by the effects of eccentricity – computational
methods are required to determine the exact balances
between the two.

 Non-Newtonian flows in eccentric borehole annuli with
rotation will exhibit shear-dependent changes to viscosity,
plus changes to applied pressure gradient that depend on
rotation speed, fluid density and viscosity (the “apparent
viscosity” now varies throughout the flow domain).
Simple rescaling arguments cannot be used to deduce
flow properties for u(y,z) because the governing equations
are extremely complicated in form.

 For non-Newtonian flows, laboratory testing and
extrapolation is not possible because of the foregoing
complications – hence, the only recourse for prediction
and job planning is full-scale testing with actual nonlinear
fluids or, alternatively, detailed computational fluid-
dynamics analysis.

Field and laboratory examples.   Figures 2-2-1 and 2-
2-2, together with the related discussions, are obtained from
correspondence with John Lofton, Chevron, to whom the
authors are grateful.  Figure 2-2-1 provides a “pressure-while-
drilling” (or, PWD) log from a field run.  PWD logs provide
real-time pressures as are conveyed to the surface with
Measurement-While-Drilling tools and are essential to drilling
safety.  Such logs can monitor downhole conditions accurately
and supply updates to calibrate software models used for
planning.

Lofton writes, “Look at 1600 hrs on 25 April 02.  After
the connection at 1693’ (red arrow), the pump is on (green
curve) and the rotary is abruptly increased up to 100 RPM (red
curve).  The stand pipe pressure (blue curve) spikes –
increased pump pressure. The ECD (red and black curves on
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the far right) both increase. The rotation has increased the
pump pressure and the annular friction for the same pump rate.
This response seems consistent throughout the PWD log. This
is a directional well from a platform with an angle of less than
45 degrees and is using a low density water based mud.”

Figure 2-2-1.  A “pressure-while-drilling” (PWD) log.

Figure 2-2-2.  A laboratory example for 40o well.

“I have also looked at broader industry applications –
some of which I do not have first-hand, on-location
experience. There was a study done at the University of Tulsa
on the effects of rotation in inclined wellbores. I think it is
excellent, honest work. No products to sell, no bias on the
outcome. The effects of rotation were investigated at 40, 65,
and 90 degrees of inclination. The annular pressure was
monitored with rotation at each of these inclinations. The
results at 40 degrees were similar to the PWD log above and
reflects my experience in the field. Especially at the lower end
of the flow-rates – 300 gpm and 350 gpm.”  (Results for 65o

and 90o were more erratic, with some resulting in reduced
pressure gradients – possibly because hole geometry changes
due to unflushed cuttings.)  The last comment on pronounced
rotation effects at lower volume flow rates is especially
significant.  Lower flow rates point to high values of the
dimensionless azimuthal-to-axial velocity ratio, a good
indicator of rotation coupling to the overall flow.  Many
drillers have also indicated cuttings transport problems in
larger diameter holes – large diameters are precisely the ones
with smaller annular velocities.   These two observations
support the use of rotating pipe models in planning drilling
jobs.
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Part II:  Calculated Examples

Example 7-5.  Effect of steady-state rotation for
Newtonian fluid flow in eccentric annuli.

Here we consider the effects of annular eccentricity.  To
isolate rheological effects, we assume a Newtonian fluid with
constant viscosity so shear-thinning is impossible. The
eccentricity is 0.333. As a validation point, we first obtain the
flow rate under non-rotating conditions using the steady-state,
curvilinear grid flow solver in Figure 7-5a.  For the
assumptions shown, the flow rate is 109.2 gpm (the
parameters corresponding to the “engineering variables” not
shown are identically zero).  Next, we run the transient
simulator for the same non-rotating flow conditions, as shown
in Figure 7-5b, to obtain a nearly identical flow rate of 107.2
(the difference is less than 2%).  The agreement is excellent.

Now, we importantly ask, “What if the drillpipe or
casing were rotated?  Does the flow rate increase or decrease,
assuming the same pressure gradient?”  In Figure 7-5c, we
assume a somewhat high 400 rpm to demonstrate numerical
stability, but also the fact that the asymptotic steady flow rate
decreases to 99.4 gpm, a flow rate reduction of about 8%.
Thus, in the complementary problem where flow rate is
specified and pressure gradient is to be determined, we can
expect to see similar order-of-magnitude increases to pressure
drop.  These changes are significant to drilling safety in
managed pressure drilling.

The exact decrease or increase depends on rheological
and geometric parameters, and will vary from run to run.
Differences as high as 50% have been observed.  But why did
flow rate increase in an example for concentric flow but
decrease here?  The explanation is simple.  In the earlier
example, the gpm increase was due to a decrease in non-
Newtonian apparent viscosity arising from rotation; also, for
concentric annuli, the inertia terms in the axial momentum
equations vanish identically.  In this example, the viscosity is
constant and does not change.  A non-vanishing “v/r U/”
inertia term is new.  The azimuthal velocity v is proportional
to rpm, while U/” is related to eccentricity.  The term acts
as a spatially variable pressure gradient modifier.  These
reasons are subtle but clear when we examine the governing
partial differential equations.  We chose Newtonian fluids in
this example to isolate rheological effects in order to ascertain
the importance of the rotating flow inertia terms alone.

In the Control Panel of Figure 7-5b, we checked
“Initialize flow to quiescent state.”  This assumes vanishing
initial flow.  We now check “steady conditions” for the
starting point.  The simulator first calculates a steady non-
rotating flow, and then at t = 0, uses this flow to initialize time
integrations.  This corresponds to a non-rotating pipe that is
suddenly rotated.  Figure 7-5d shows how the flow rate
decreases suddenly from 107.2 gpm to 99.4 gpm, highlighting
the effects of rotation (computing time is about one second).
Importantly, even for this high rotation rate, the transient
algorithm for coupled axial and azimuthal movement is fast

and stable.  The results also demonstrate the usefulness of
numerical simulation in drilling safety and operations.

Figure 7-5a.  Steady-state solution without rotation.

Figure 7-5b.  Transient Newtonian solution without rotation.

Figure 7-5c.  Transient rotating solution from quiescent state
(the curve actually peaks at 100 and asymptotes to 99.4 gpm).
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Figure 7-5d.  Transient rotating solution from flowing state.

Example 7-6.  Effect of steady rotation for power law
flows in highly eccentric annuli at low densities
(foams).

The annulus in Figure 7-5a, while not concentric, is not
highly eccentric.  In this example, we examine a cross-section
with high eccentricity and also allow for nonlinear power law
fluid motion.  Here, the eccentricity is 0.5.  Results for a non-
rotating pipe are given in Figure 7-6a, where a steady flow
rate of 1,052 gpm is indicated.  The time required to achieve
steady-state is approximately one second.  What happens if we
rotate the drillpipe at 300 rpm?  Figure 7-6b shows that with
rotation, the time to reach steady conditions is reduced; also,
the flow rate decreases to 905.8 gpm.  This suggests that in the
complementary problem when volume flow rate is fixed, the
effect of rotation is to increase (the absolute value of) pressure
gradient.  Consistent with the previous example, the decrease
in flow rate occurs because of inertia effects.  We emphasize
that the flow rate reduction due to rotation seen here is a
sizeable 16%.  Finally, in Figure 7-6c, we re-run the
simulation with the initial fluid assumed to be non-rotating
and flowing.  The results show an equilibration time of one
second between steady states so that flow changes are sudden
and dangerous.  The steady-state flow rate is again about 900
gpm.  There is a “bump” in the gpm vs time curve, one seen
repeatedly in many such simulations.  Whether or not this
effect is real will require laboratory observation.  All of the
calculations for this example were performed stably, as the
line graphs show, and required only 2-3 seconds of computing
time.

Figure 7-6a.  Power law flow with non-rotating pipe.

Figure 7-6b.  Power law flow with rotating pipe (zero starting
conditions).

Figure 7-6c.  Power law flow with rotating pipe (from flowing
conditions).
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It is important to point out some important software
details associated with flow initialization.  For steady flow
formulations, the initial state of the flow does not appear as a
parameter because there is no variation in time (actually, it
does in a numerically sense, since initial solution guesses are
taken, although internally to the software).  For transient
formulations, the initial state must be specified.  If quiescent
stagnant-flow conditions are selected, the box shown in Figure
7-6d is checked and “Simulate” can be clicked immediately.

Figure 7-6d. Assuming quiescent, stagnant-flow initial
conditions.

On the other hand, the fluid may be moving initially at t
= 0, and then, the transient flow specifications shown in the
user interface is applied. If the initial flow is not rotating, we
know that its solution does not depend on density; we can
therefore calculate it assuming a very small value of 
together with large time steps.  If we wish to initialize to a
non-rotating steady flow, the message box in Figure 7-6e
appears, reminding the user to click “Create Flow” to start this
process.  Once this is completed, the “Simulate” button can be
clicked to perform the required transient analysis.

Figure 7-6e.  Creating a non-rotating, steady initial flow.

If the starting flow is rotating, its solution does depend
on density and time steps will need to be very small to ensure
convergence.  This initialization is not supported at the present
time because the solution procedure cannot be made as robust
or automatic as desired by the authors, but continuing research
is being pursued in this area.

Example 7-7.  Effect of steady rotation for power law
flows in highly eccentric annuli at high densities
(heavy muds).

We emphasized earlier that for non-rotating flows, the
effects of density vanish at large times.  Thus, in computing
non-rotating steady-state flows with the transient algorithm, it
is advantageous to use as small a fluid density as possible in
order to quickly converge the calculations.  Here we wish to
evaluate the effects of mud weight under rotating conditions.
For the non-Newtonian eccentric flow in Figure 7-7a, a very
low specific gravity of 0.01 leads to a flow rate of  898.5 gpm.
Next we wish to consider the opposite extreme, e.g., a heavy
mud or cement with a specific gravity of two.  Because the
unstable convective term never vanishes when the pipe rotates
(its magnitude is proportional to fluid density and pipe rpm),
we decrease the time step to 0.0001 sec and increase the
number of time steps simulated.  The resulting flow rate is a
much lower 135.1 gpm.  Computation times for the two runs
are five seconds and two minutes, approximately.  Finally, we
reduce the specific gravity to 1.0, i.e., an unweighted mud.
Will the flow rate vary linearly with density, that is, fall
midway between 135.1 and 898.5 gpm?  Figure 7-7c shows
that the flow rate is, in fact, 160.1 gpm.  This unpredictability
shows why computer models are important to real-world field
job planning.

Figure 7-7a.  Very low density fluid (e.g., foam) at high rpm.
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Figure 7-7b.  Very high density fluid (e.g., heavy mud or
cement) at high rpm.

Figure 7-7c.  Unweighted fluid (e.g., water or brine)
at high rpm.

Example 7-8.  Effect of mudpump ramp-up and ramp
down flowrate under non-rotating and rotating
conditions.

In Figure 7-8a, we consider a power law fluid in an
eccentric annulus under a constant imposed pressure gradient
of – 0.005 psi/ft with the drillpipe completely stationary.  This
is seen to produce a steady-state flow rate of 1,051.8 gpm as
shown.  In practice, the mud pump starts and stops, and
transient effects are associated with ramp-up and ramp-down.
We ask, “How are pressure gradient and flow rate transient
properties related?”

Figure 7-8a.  Constant pressure gradient calculation.

To answer this question, we modify several menu entries
of Figure 7-8a so that the pressure gradient is no longer
constant.  The assumption shown in Figure 7-8b allows a
sinusoidal ramp-up from quiet conditions to the previous value
of – 0.005 psi/ft, followed by a full ramp-down. This is
accompanied by time mesh refinement plus the use of
additional time steps.  Clicking on the “?” to the far right of
the pressure gradient menu produces the left-side diagram of
Figure 7-8c showing pressure assumptions.  The right-side
diagram gives the computed volume flow rate as a function of
time.

Figure 7-8b.  Mudpump ramp-up and ramp-down.
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Figure 7-8c.  Assumed pressure gradient and
calculated flow rate.

Next, we determine the effect of drillstring rotation.   We
simply change the zero rotation input in Figure 7-8b to allow
for a 100 rpm rotation rate as shown in Figure 7-8d.  For the
same pressure gradient variation as above, the flow rate is now
substantially reduced as shown in Figure 7-8e.

Figure 7-8d.  Increasing rotation rate to 100 rpm.

Figure 7-8e.  Significantly reduced volume flow rate with
rotation.

Example 7-9.  Effect of rotation and azimuthal start-
up.

In this example, we study the effects of drillstring
rotation start-up on the baseline non-rotating problem defined
in Figure 7-9a for a power law fluid in an eccentric annulus.
Figure 7-9b shows that after 100 sec, the (almost) steady flow
rate is 1,024.0 gpm.

Figure 7-9a.  Non-rotating flow.

Figure 7-9b.  Non-rotating flow.

What happens when the drillstring is rotating at a fixed
constant 100 rpm for the duration of the start-up process?
This new flow is easily obtained by changing the constant rpm
input in Figure 7-9a to that in Figure 7-9c, to produce the flow
rate history shown in Figure 7-9d.  After 100 sec, the flow has
fully equilibrated at the reduced rate 221.1 gpm.  There is a
flow rate “overshoot” near 350 gpm early on that we have
observed on all rotational flow calculations.
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Figure 7-9c.  Constant 100 rpm throughout.

Figure 7-9d.  Constant 100 rpm throughout.

We next determine the effects of rotation start-up.  In
Figure 7-9e, we now choose the “Bt” input option for RPM
definition, typing “1” into that box for the time step
information assumed.  In Figure 7-9f, we show at the left how
the same 100 rpm is achieved as before, but at the end of the
100 sec period.  The right-side diagram shows a flow rate
returning to the 200 gpm range, however, the flow rate
overshoot is now near 600 gpm.

Figure 7-9e.  Linearly increasing rpm with time.

Figure 7-9f.  Linearly increasing rpm with time.

Example 7-10.  Effect of axial drillstring movement.

In this non-rotating drillstring example, we study the
effects of axial movement on the baseline problem defined
previously in Figure 7-9a for a power law fluid in an eccentric
annulus.  Again, Figure 7-9b shows that after 100 sec, the
(almost) steady flow rate is 1,024.0 gpm assuming stationary
pipe.  If a constant +20 in/sec is modeled instead, we have an
increased 1,132.6 gpm, whereas if –20 in/sec is taken, we find
a reduced 912.6 gpm.  Computer screens for these simple
constant-speed dragging calculations are not shown.

In field applications, the drillstring is often reciprocated
axially to facilitate jarring operations or cuttings removal
while the mudpump acts under an almost constant pressure
gradient condition.  One might ask what the effects on flow
rate, apparent viscosity, shear rate and viscous stress are, with
the answers sure to assist the engineer in interpreting the
physical consequences of his actions.  For example, increases
in bottomhole stress may improve hole cleaning while
reductions in apparent viscosity may lubricate the drillstring.
In Figure 7-10a, we alter the “Upipe” input to allow sinusoidal
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drillstring reciprocation with a peak-to-peak amplitude of 20
in/sec and a frequency of 0.1 Hz.  Clicking on the “?” at the
far right will produce the pipe displacement speed history at
the left of Figure 7-10b.  At the right is the stably computed
oscillatory flow rate.

Figure 7-10a.  Sinusoidal drillstring reciprocation.

Figure 7-10b.  Pipe displacement history and computed
flow rate.

The “Results” menu in Figure 7-10c provides additional
post-processed results useful for correlation purposes.  For
instance, “Color plots” provides displays of the physical
quantities appearing in the list, several of which are shown in
Figure 7-10d.  Notice in Figure 7-10a that we had elected to
save “movie frames” showing the axial velocity distribution
evolving in time (the “interactive plot” option would produce
line graph results during simulation).  Playing the “Axial
velocity – Movie” option produces a movie, which can be
viewed continuously or frame-by-frame.  Typical movie
frames (with time increasing to the right) are shown in Figure
7-10e.  All of the post-processing options described here are
also available for rotating flow problems.

Figure 7-10c.  Example color output.

Figure 7-10d.  Example color output for several physical
quantities.

Figure 7-10e.  Frames from axial velocity movie (time
increasing).
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Example 7-11.  Combined rotation and sinusoidal
reciprocation.

In this example, again for transient, nonlinear, non-
Newtonian power law flow in an eccentric annulus, we
combine two previous calculations and demonstrate the ease
with which combined sinusoidal axially reciprocating pipe
motion and drillstring rotation can be modeled, literally by
filling in input boxes and clicking.  The assumptions are given
in Figure 7-11a, assumed pipe displacement histories are
displayed in Figure 7-11b, and the computed volume flow rate
is provided in Figure 7-11c.  Note from this curve the
pronounced overshoots and flow rate fluctuations.  We have
modeled the mud pump as a constant pressure gradient source
in the model that leads to variable flow rate.  In reality, the
pump may act more as a constant rate source that leads to
time-dependent pressure gradients.  This latter model is much
more complicated mathematically and cannot be solved within
a reasonable time.  However, the percent fluctuations seen
from flow rate curves such as that in Figure 7-11c represent
those for pressure gradient and can be used meaningfully for
managed pressure job planning.

Figure 7-11a.  Combined transient reciprocation and rotation.

Figure 7-11b.  Pipe displacement history display.

Figure 7-11c.  Computed volume flow rate.

Example 7-12.  Combined rotation and sinusoidal
reciprocation in presence of mudpump flow rate
ramp-up for yield stress fluid.

This comprehensive example illustrates the high level of
simulation complexity offered by the math model.   Here we
again consider an eccentric annulus, however, now containing
a Herschel-Bulkley yield stress fluid.  The drillpipe is allowed
to axially reciprocate sinusoidally in time, while rotation rate
increases linearly with time.  The mudpump pressure gradient
is allowed to steepen with time from start-up to describe
increased pumping action.  All of these effects are coupled
nonlinearly. They can be computed quickly and stably, and if
numerical instabilities are encountered, they can be remedied
by decreasing time step size.  To accommodate this
possibility, the algorithm is efficiently coded to make optimal
use of memory resources and will allow up to 10,000,000 time
steps, for which calculations may require about fifteen minutes
or more.  The assumptions are shown in Figure 7-12a, while
detailed pipe displacement histories, applied pressure
gradients and computed volume flow rate are given in Figure
7-12b.
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Figure 7-12a.  Basic assumptions, comprehensive example.

Figure 7-12b.  Additional assumptions and computed flow
rate with time.

Closing Remarks
The present paper describes new capabilities in modeling

steady and transient non-Newtonian flow in highly eccentric
annuli, with or without plug zones associated with yield stress
fluids, with realistic geometric anomalies, plus effects like
borehole axis curvature and drillpipe translation and rotation.
The rigorous fluid-dynamical model formulated here and its
exact mathematical solution, augmented by rapidly converging
algorithms and convenient color displays, are intended to
provide state-of-the-art capabilities useful to managed

pressure drilling, hole cleaning and cementing.  The usual
methods for well control include changing mud rheology,
altering pump rate or schedule, and adjusting of surface choke
pressure levels.  We have demonstrated how pressure
gradients (or, equivalently, flow rate) depends on rotation and
shown how complicated operational scenarios can be
modeled.  This work therefore offers drillpipe rotation as an
additional means for well control and drilling safety in
managed pressure drilling.
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