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Abstract
Conventional swab-surge calculations, crucial to job

planning and safe drilling, are deficient in several respects.  In
modern horizontal wells, typically miles in length, high
annular borehole eccentricities are the rule; existing methods
unrealistically assume, for simplicity, concentric boreholes,
and predict pressure drops largely inconsistent with tripping
speeds.  Most models also assume that mud circulation ceases,
a premise no longer true in managed pressure drilling
operations with continuous circulation. These errors are
problematic to steady flows, but transient flows take even
more damaging assumptions.  “Water hammer” approaches
(also using the inadequate assumptions noted) apply classical
acoustic solutions assuming sudden valve closures or piston
excitation.  Since drillstrings are long and heavy, transient
effects focusing on constant density, inertia-dominated effects
are more likely in practice, but few models address this limit.
We present new steady and transient models for swab-surge
analysis encompassing several important drilling variables:
high annular eccentricity, non-Newtonian flow where yield
stress is important (with correct predictions for pressure drop
and plug zone size and shape), and simultaneous mudpump
circulation.  The new methods, rigorously formulated and
quickly solved on curvilinear meshes to accommodate cuttings
bed and washout geometries, provide the accuracy and
confidence needed to drill in ultradeep waters.

Introduction

Non-Newtonian flows in highly eccentric annuli with
cuttings beds, washouts and fractures, encountered in
cementing and managed pressure (and underbalanced) drilling,
are solved without crude slot flow and hydraulic radius
approximations.  The nonlinear partial differential equations,
written to customized, boundary-conforming, curvilinear
coordinate grid systems providing high physical resolution in
tight spaces, are solved exactly with no-slip conditions, and
detailed velocity, apparent viscosity, shear rate and viscous
stress fields are computed for pressure drop, hole cleaning and
other applications.  For fluids with yield stress, well known
uncertainties related to plug zone size and shape are fully
resolved using Herschel-Bulkley relations applicable across
transition boundaries (determined iteratively as part of the
solution) reaching into and across the plug.  Two-dimensional,
single-phase, steady flow simulations, solved rapidly using

finite difference methods, provide detailed numbers and color
displays for all physical quantities within seconds, with
excellent numerical stability for all fluid types with and
without yield stress.  Formulations for steady-state casing or
drillpipe longitudinal translation and rotation are presented,
and extensions to model transient incompressible effects
associated with starting, stopping and periodic movement,
important in evaluating cement-mud displacement efficiency,
axial-helical cuttings transport, swab-surge, and jarring
remedies for freeing stuck pipe, are developed.  Practical
problems are presented and the advantages over existing
models are described.

In this paper, extensive calculation methods and new
modeling capabilities are presented for job planning and swab-
surge predictive analysis in modern managed pressure drilling
applications.

Background

Annular flow modeling in boreholes, important to both
drilling and cementing, is as old as petroleum engineering
itself.  In the simplest case, flow configurations are
represented by concentric circles through which steady, two-
dimensional, Newtonian and power law fluids flow; in these
limits, exact analytical or numerical solutions of the flow
equations provide useful tools for operational applications.
For more complicated problems, e.g., eccentric annuli, non-
ideal geometric irregularities, non-Newtonian yield stress
fluids, pipe translation and rotation, however, numerous
mathematical obstacles arise, which unfortunately introduce
inefficiencies into field practices.  We discuss these problems
next.

Geometric complications.  In deviated and horizontal
wells, heavy pipe and drill collar weight implies eccentric
positioning within the borehole, as shown in (a) of Fig. 1,
leading to difficulties in geometric description and solution.
High eccentricities are often accompanied by non-symmetrical
washouts, thick and irregularly formed cuttings beds, and
possibly, fracture indentations.  Early in petroleum
engineering, the notion of a simple “mean hydraulic radius”
permitting representation as an equivalent circular pipe flow,
as depicted in (b) of Fig. 1, was widely employed; this
approach, however, was not useful since what is meant by
“mean” is not obvious and certainly not generally applicable
from one situation to the next.  Later “slot flow” models
“unwrapped” the eccentric annulus, with the result as
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illustrated in (c) of Fig. 1, and then, further discretized the
resulting slot into local parallel plate elements, each of which
is approximately modeled by simple solutions for fluid flow
between ideal parallel plates.  While somewhat reasonable,
this approach applied strictly to very narrow annuli, but even
then, curvature terms in the general governing momentum
equations are always neglected.  Thus, inertial effects are
never properly modeled even in the limit of very narrow
elements.

Fig. 1 – Idealizations commonly used to represent eccentric
borehole annuli.

Improvements to slot flow models are provided by “pie
slice” formulations, idealized in (d) of Fig. 1, in which
eccentric annuli are represented by “pie slices” of varying size
and included angle having the pipe center as a virtual origin.
The solution for each slice is taken from the numerical
solution for a concentric annular problem with a closely
matched radius.  In this approach, pie slices ranging from
small to large are used.  However, it is clear from the sketch
that perfect geometric matching of the borehole boundary is
never completely achieved, so that adequate modeling of
curvature effects is approximate at best.  Moreover, the
concentric solutions used are numerical in the case of yield
stress fluids and awkward in implementation.  More recently,
authors have used “bipolar coordinates” to represent eccentric
circles, and while these provide useful host formulations for
zero-yield-stress fluids, the algebra required to represent even
the simplest non-Newtonian flow problems is overwhelming
compared to the methods introduced later.  The mapping
method used in the present paper, it turns out, provides
superior modeling capabilities in that the complete momentum
equation for any rheology and annular geometry can be solved
exactly.  The new approach is less intensive numerically and
easily describes realistic cuttings beds, washouts and fracture
indentations.

Geometric difficulties, however, are much more than
what meets the eye.  When yield stress fluids flow, “plug
regimes” that move as solid bodies are always present in flow
domains below a given yield stress.  When slot flow or pie
slice models are used to simplify the solution process, “plug
rings” are always obtained by virtue of the adhoc recipes
described above.  This is physically incorrect in most
operational situations characterized by high eccentricity.  For
example, one would expect a large, isolated, almost circular
plug element at the wide side of (a) of Fig. 1 and perhaps in a

narrow strip at the bottom, but a flow containing such a solid
plug would be ruled out by both solution methods.  Until
recently, of course, exact solutions for (a) of Fig. 1 with yield
stress fluids, e.g., Bingham plastics and Herschel-Bulkley
models, were impossible anyway for one important reason –
theoretically, the size and shape of the plug zone are unknown
in problems without azimuthal symmetry, and without
knowledge of these internal boundary properties, a complete
flow solution could not be obtained.  This paper addresses and
solves this problem in its complete generality.

Mathematical difficulties.  Ideally, one would represent
the details of highly eccentric annular domains exactly and in
their entirety using boundary-conforming, curvilinear meshes,
to which the governing equations of motion would be written,
solved, and post-processed for relevant engineering
information.  However, this is often numerically difficult
because there are as many distinct partial differential equation
formulations as there are fluid rheologies, e.g., the equations
for Newtonian, power law, Bingham plastic and Herschel-
Bulkley fluids are very different, each with its own
convergence, stability and physical properties.   Moreover,
because the equations are generally nonlinear, solutions must
be obtained by iterative means.  In fact, iterative solutions
solving complicated grid generation equations must be
followed by iterative solutions to produce the required
flowfields on the resulting meshes.  These difficulties are
compounded, typically, by user inexperience in computational
grid generation and numerical analysis.  Even when solutions
to underlying velocity fields are available, post-processed field
solutions for shear rate, viscous stress, apparent viscosity, and
so on, need to be automated and rapidly displayed in order to
be useful in real-time applications.  This requirement is
particularly relevant in ultra-deepwater applications since fast
and accurate pressure solutions are required to navigate the
narrow window between formation fracture and disastrous
blowout.  These problems are all addressed in the software
development program.

User interface considerations.  Assuming that both
geometric and mathematical issues can be addressed
satisfactorily, human factors issues relating to software usage
become all-important especially in anticipated applications to
managed pressure drilling in ultra-deepwater drilling and hole-
cleaning at high deviation angles.  Physical formulations must
be mathematically rigorous, numerical solutions must be
detailed and pertinent to the annular geometry at hand, and
complete field solutions for all engineering properties must be
achievable in a manner that is completely transparent to
typical engineering users with undergraduate degrees – and,
even better, to field technicians with minimal modeling
experience or mathematical training.  This requires fully
automatic grid generation, nonlinear equation setup and stable
matrix inversion.

The user interface must be designed with rigsite
workflows in mind.  Importantly, accuracy and speed, that is,
“desktop speed” from problem definition to automated color
displays, go hand-in-hand, because of demands imposed by
narrow margins between pore-pressure and fracture-pressure
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gradient profiles in modern offshore applications.  All of the
above considerations, again, accurate geometric modeling,
rigorous mathematical formulation and solution, and fast,
user-friendly, graphically-oriented software implementation,
render the general annular flow modeling problem extremely
challenging.  We now address each of the foregoing issues and
explain how the solutions satisfactorily address these needs.

Exact Geometric and Mathematical Formulation

Boundary-conforming, curvilinear meshes. Coordinate
systems “natural” to engineering problems play vital roles in
facilitating efficient and accurate computational solutions.  For
example, circular coordinates are natural to circular wells
producing from infinite reservoirs, while rectangular systems
are ideal for problems solving, say, temperature distributions
on rectangular plates.  By the same token, a mesh system
suitable for eccentric annular geometries would have inside
coordinate lines that coincide with circular or square drill
collars with stabilizers, while outside lines would conform to
irregular borehole walls with their cuttings beds, washouts and
fracture indentations.  A second set of coordinate lines might
be constructed orthogonally to the first, although this is not
necessary if all terms in the resulting transformed governing
equations are retained.  By contrast, it is clear that rectangular
(x,y) or circular (r,) coordinates are less than satisfactory for
accurate geometric description of general annuli.

In natural “boundary-conforming, curvilinear
coordinates,” here denoted by (,), boundary conditions
would be easily specified.  For example, the no-slip velocity
condition for stationary surfaces, say, at pipe and borehole
surfaces, is simply described by “u = 0” along horizontal grid
lines  = pipe and = borehole where the subscripted numbers
are constants.  By contrast, the formulation in rectangular
coordinates would require u = 0 applied along cumbersome
curves, e.g., u{x,f(x)} = 0 where y = f(x) represents internal
and external contours.

The objective behind grid generation is a set of
transformations (x,y) and (x,y) that enable simple boundary
condition implementation, so that a complicated physical
region, here the eccentric borehole annulus, becomes a simple
rectangular one in a computational domain, where the solution
of the mathematical problem is undertaken.  Once the
mapping transforms are available, the governing equation
itself must be expressed in the new coordinates.  For example,
the partial differential equation for steady-state, two-
dimensional, Newtonian fluid flow is the well known uxx + uyy

= - -1 P/z where  and P/z represent viscosity and
applied pressure gradient. Although this appears in rectangular
coordinates, the equation applies to all annular geometries.

The conversion process itself is straightforward.
Suppose we wish to express a function u(x,y) in terms of
convenient independent variables  and .  If the
transformations x = x(,) and y = y(,) are available, direct
substitution allows us to rewrite u(x,y) in the form u(x,y) =
U(,), where the functional relation U(,) between  and

is generally different from the relation u(x,y) connecting x
and y.  Derivatives of u(x,y) with respect to x and y are easily
related to derivatives of U(,) taken with respect to  and .
For example, it is easily shown that U = uxx + uy 

yand U =
uxx + uy 

y for the first derivatives, with obvious extensions
to second derivatives obtained using the chain rule of calculus.
In general fluid-dynamical problems, the resulting equation
for U(,) is typically more complicated than that for u(x,y).
The computational benefit, however, is accurate and noise-free
implementation of boundary conditions, not to mention the use
of much fewer grid points for the same level of physical
resolution.  Calculated solutions are displayed in physical
space with the assistance of custom color plotting routines.

Many commercial simulators calculate velocities and
other flow properties directly using rectangular (x,y) grids.
We emphasize that x-y coordinate lines do not conform to the
irregular curves defining near and farfield boundaries; also,
high grid densities imposed, say at the bottom of an eccentric
annulus, would require similarly high densities far away where
detailed resolution is unnecessary.  This results in large,
inefficient computing domains containing dead flow and
extremely large matrices.  In addition, “choppy” meshes lead
to noise, inaccuracy and instability.  Other simulators,
particularly general purpose codes used in computational fluid
dynamics (CFD), do support automatic and efficient “finite
element” or “finite volume” gridding.  However, they are not
portable in the sense that special licenses must be purchased
for users, thus incurring significant costs.  But more
importantly, they run proprietary, high-overhead “canned”
routines that cannot be adapted to new mathematical models
(such as the novel yield stress formulation introduced below)
and cannot be “tuned” to run optimally.  Also, they offer
inflexible output formats that are not easily integrated with
custom designed graphics and user interface software.  In this
paper, the objective is a fast, flexible and accurate solution
procedure that can be installed on all operating systems at
minimal cost.

We conceptually describe the grid generation process in
this paper.  Details are offered in the principal author’s books
on drilling and reservoir engineering, e.g., see Chin (1992,
2001, 2002).  We reiterate the basic ideas here because they
are essential to understanding the solution approach and its
topological advantages.  Rather than dealing directly with =
(x,y) and = (x,y), we equivalently consider the inverse
functions x = x(,) and y = y(,) satisfying nonlinear
coupled partial differential equations, which are derived in the
form

(x
2 + y

2) x -2 (xx + yy) x  + (x
2 + y

2) x  = 0   (1)

(x
2 + y

2) y -2 (xx + yy) y  + (x
2 + y

2) y  = 0   (2)

where  and  are now independent (as opposed to dependent)
variables.  We aim to map the irregular flow domain of Fig. 2a
into the simple rectangular computational domain of Fig. 2b
where B1 and B2 are physically insignificant “branch cuts”
where single-valued solution constraints are enforced.
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Fig. 2a – Irregular physical domain with inefficient rectangular
meshes.
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Fig. 2b – Irregular domain mapped to rectangular computational
space.
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Fig. 2c – Physical domain in boundary-conforming coordinates.

How are the foregoing equations used to create
numerical mappings?  Suppose that contour CW in Fig. 2a is to
map into = 0 of Fig. 2b.  The user first discretizes CW in Fig.
2a by penciling along it a sequence of dots chosen to represent
the curve.  If these are selected in an orderly, say, clockwise
fashion, they define the direction in which  increases.  Along
= 0, values of x and y are known (e.g., from measurement
on graph paper) as functions of .  Similarly, x and y values
along Cr are known as functions of  on = 1 of Fig. 2b.
These provide the boundary conditions for Eqs. 1 and 2, which
are augmented by single-valuedness constraints at arbitrarily
chosen branch cuts B1 and B2.  It is clear that this process is
easily automated by computer.

Conventionally, in grid generation, Eqs. 1 and 2 are
discretized by finite differences and solved by point or line
relaxation, starting with guesses for the dependent variables x
and y.  The problem is linearized by approximating all
nonlinear coefficients using values from earlier iterations.
Typically, several updates to Eq. 1 are taken, followed by
updates to Eq. 2, with this cycling process, often unstable,

repeated continuously until convergence.  Variations of the
approach are known, with 100 100 mesh systems in the -
plane requiring minutes of computing time.  Once x = x(,)
and y = y(,) are solved and tabulated as functions of  and
, physical coordinates are generated.  First,  is fixed; for
each node  along this , computed values of (x,y) pairs are
successively plotted in the x-y plane to produce the required
closed contour.  This procedure is repeated for all values of ,
until the entire family of closed curves is obtained, with limit
values  = 0 and = 1 again describing Cw and Cr.
Orthogonals are constructed by repeating the procedure, with
and  roles reversed.

This process provides the curvilinear mapping only.  The
equation describing the physics (e.g., the Navier-Stokes
equation for Newtonian flow or the general rheological
equations for non-Newtonian fluids) must be transformed into
(,) coordinates and solved.  In general, the transformed
governing equation, which is algebraically more complicated,
must be solved, and this procedure introduces its own
complications and numerical challenges.  The
“simplification,” however, lies not in the transformed
equation, which now contains mixed derivatives and variable
coefficients, but in the computational domain itself, because
this domain takes on a rectangular form amenable to simple,
noise-free numerical solution, requiring significantly fewer
nodal points for high resolution physical definition.

Again, existing solution methods solving x(,) and
y(,) stagger the solutions for Eqs. 1 and 2.  For example,
crude solutions are used to initialize the coefficients of Eq. 1,
and improvements to x(,) are obtained.  These are used to
evaluate the coefficients of Eq. 2, in order to obtain an
improved y(,); then, attention turns to Eq. 1 again, and so
on, until convergence is achieved.  Various over-relaxation
means are used to implement these iterations, e.g., point SOR,
line SLOR, line SOR with explicit damping, alternating-
direction-implicit, and multigrid, with varying degrees of
success.  Often these schemes diverge computationally.  In
any event, the staggering used introduces different artificial
time levels while iterating.  Classic numerical analysis,
however, suggests that faster convergence and improved
stability are possible by reducing the number of time levels.

A new approach to rapidly solve the nonlinear coupled
grid generation equations was proposed by the principal
author a decade ago and is based on a very simple idea.  This
idea has since been validated in numerous applications.
Consider first z + z = 0, for which zi,j  (zi-1,j + zi+1,j +
zi,j-1 + zi,j+1)/4 holds on constant grid systems (this is easily
derived using standard finite difference formulas).  This well-
known averaging law motivates the recursion formula zi,j

n =
(zi-1,j

n-1 + zi+1,j
n-1 + zi,j-1

n-1 + zi,j+1
n-1)/4 often used to

illustrate and develop multilevel iterative solutions; an
approximate, and even trivial solution, can be used to initialize
the calculations, and nonzero solutions are always produced
from nonzero boundary conditions.

But the well-known Gauss-Seidel method is fastest: as
soon as a new value of zi,j is calculated, its previous value is
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discarded and overwritten by the new value.  This speed is
accompanied by low memory requirements, since there is no
need to store both n and n-1 level solutions: only a single
array, zi,j itself, is required in programming.  The approach to
Eqs. 1 and 2 was motivated by the following idea.  Rather than
solving for x(,) and y(,) in a staggered, leap-frog manner,
is it possible to simultaneously update x and y in a similar
once-only manner?  Are convergence rates significantly
increased?  What formalism permits us to solve in Gauss-
Seidel fashion?  What are the programming implications?

Complex variables are used often in harmonic analysis
problems; for example, the real and imaginary parts of an
analytical function f(z), where z = x + i y, provide solutions
satisfying Laplace’s equation.  Here we use complex analysis
differently.  We define a dependent variable z by z(,) =
x(,) + i y(,), and then add Eq. 1 plus i times Eq. 2, in
order to obtain the net result (x

2 + y
2) z - 2 (xx +

yy) z + (x
2 + y

2) z = 0.  Now, the complex
conjugate of z is z*(,) = x(,) - i y(,), from which we
find that x = (z + z*)/2 and y = - i (z - z*)/2.  Substitution
produces the simple and equivalent one-equation result

(z z*) z - (zz* + z*z ) z + (z z*) z  = 0  (3)

This form yields significant advantages.  First, when z is
declared as a complex variable in a Fortran program, Eq. 3
represents, for all practical purposes, a single equation in
z(,).  There is no need to leap-frog between x and y
solutions now, since a single formula analogous to the
classical model zi,j = (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 is
easily written for the zi,j using Eq. 3 as the host equation.
Because both x and y are simultaneously resident in computer
memory, the extra time level present in staggered schemes is
completely eliminated, as in the Gauss-Seidel method.  In
thousands of test simulations conducted using point and line
relaxation, convergence times are shorter by orders of
magnitude relative to those obtained for cyclic solution
between x(,) and y(,).  Convergence appears to be
unconditional, monotonic and stable.  Because Eq. 3 is
nonlinear, von Neumann tests for exponential stability and
traditional estimates for convergence rate do not apply, but the
evidence for stability and convergence, while empirical,
remains very strong and convincing since we have always
computed useful grids in all test runs.

Iterative solution of nonlinear partial differential
equations.  Earlier we noted that uxx + uyy = - -1 P/z applies
to steady, two-dimensional, single-phase Newtonian flows for
borehole annuli having the most complicated shapes;
unfortunately, practical solutions cannot be accurately
obtained in (x,y) coordinates.  Here,  is a constant viscosity
and P/z is the applied pressure gradient in the z direction
assumed to be known.  This is the so-called Poisson equation
in mathematics, and students who have undertaken its study
realize that, despite the apparent simplicity offered by few
terms and complete linearity, useful solutions to the classical
model are nonetheless difficult to obtain.  When the
underlying fluid is nonlinear, this equation is replaced by Eq.

4, which is vastly more complicated, that is,

 (N u/y)/y  +  (N u/x)/x  = P/z                         (4)

where N now represents the “apparent viscosity” function.
This apparent viscosity is not constant, but a function of local
shear rates whose mathematical form depends on the
particular rheology assumed.  For example, in the case of
power law fluids modeled by an exponent “n” and a
consistency factor “K,” N takes the form N = K [ (u/y)2 +
(u/x)2 ](n-1)/2.  Even without solving the problem, it is
clear that, since u/x and u/y depend on the (unknown)
solution itself, any resulting apparent viscosity must vary
locally within the flow domain and depend on both geometric
details and flow rate.  Detailed computed solutions for annular
flows are presented in Chin (1992, 2001) where approximate
approaches to plug flow modeling are used.

Because Eq. 4 is now strongly nonlinear, the solution
process at its very heart must remain nonlinear.  This implies
that one cannot use simpler Newtonian solutions as leading
approximations and focus on higher order improvements to
them.  The basic solution method must retain a fully nonlinear
character in order that well known nonlinear relationships
between pressure gradient and volume flow rate evolve as part
of an iterative computational process.  As if this alone were
not complicated enough, we emphasize that it is the re-
expression of Eq. 4 in general (,) curvilinear coordinates,
not in simple (x,y) coordinates, that must be solved, and that
these coordinates and their metrics are only available
numerically.

The transformed equation now contains additional terms
as well as nonlinear coefficients that depend on the mapping.
Direct solutions are not numerically possible, but exact
solutions can be obtained iteratively.  In fact, finite difference
methods are used; the solutions are obtained line-by-line using
so-called “successive line over relaxation” (SLOR) schemes
written in the curvilinear coordinates.  These iterative
solutions are initialized by “close” analytical or numerical
solutions; the closer the initial guess, the more rapid the
convergence.  For typical problems, the efficient schemes
devised will produce a usable curvilinear grid in
approximately one second of computing time, while the
solution of the transformed momentum equation (when
pressure gradient is specified) may require two-to-three
seconds.  Again, detailed discussions and computed solutions
for power law and simple plug flows in highly eccentric
annuli, with practical applications, are given in Chin (1992,
2001).  The approximate plug flow methods developed in
these early researches are now obsolete and are replaced by
the following exact approach for yield stress description and
modeling.

Yield stress, plug zone size and shape modeling.  In
fluid flows where yield stresses exist, “plug zones” are to be
found.  These plugs move as solid bodies within the flowing
system.  For pipes with circular cross-sections and for
concentric annuli, it is possible to derive exact analytical
solutions for plug zone size and shape for Bingham plastics
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(general solutions have, in fact, been derived for both
geometries assuming Herschel-Bulkley fluids, and will be
presented separately).  For circular pipes, the cross-sectional
plug is simply a circle; for concentric annuli, of course, the
plug is a concentric ring.

The appearance of solid plugs within moving streams
results from the rheological model used by mathematicians to
idealize the physics.  If we now denote the shear rate for the
flow by  = [ (u/y)2 + (u/x)2 ]1/2, this idealization can be
written formally as

N  = k n-1 + Syield/ if {1/2 trace (SS)}1/2  > 0

D = 0 if {1/2 trace (SS)}1/2  < 0                                 (5)

where the general extra stress tensor is denoted by  S and the
deformation tensor is given by D.  Here, 0 is the so-called
“yield stress.”  The discontinuous “if, then” character behind
Eq. 5 is responsible for the sudden transition from shear flow
to plug flow commonly quoted.  As noted, for flows with
azimuthal symmetry, that is, circular pipes and concentric
annuli, exact, rigorous mathematical solutions are in fact
possible.

For non-circular ducts and eccentric annuli, which
describe a large number of practical engineering problems, it
has not been possible to characterize plug zone size and shape,
even approximately.  Thus, the most significant petroleum
engineering flow problems important to both drilling and
cementing cannot be modeled at all, let alone accurately.  In
order to remedy this situation, we observe that the
discontinuity offered in Eq. 5 is really an artificial one,
introduced for, of all reasons, “simplicity.”  This unfortunately
leads to the solution difficulties noted.  In reality, practical
engineering flows do not suddenly turn from shear to plug
flow; the transition may be rapid, but it will occur
continuously over finite measurable distances.  We therefore
turn to more realistic rheological models which apply
continuously throughout the entire problem domain, and
which, if the underlying flow parameters permit, lead to plug
zones naturally during the solution process.

The conventional Herschel-Bulkley viscoplastic model,
which includes Bingham plastics as a special limit when the
exponent “n” is unity, requires that  = 0 + K(d/dt) n, if  > 0

and d/dt = 0 otherwise.  Here  is the shear stress, 0 is the
yield stress, K is the consistency factor, n is the exponent, and
d/dt is the shear rate.  As explained, this model is far from
perfect.  For example, both Herschel-Bulkley and Bingham
plastic models predict infinite viscosities in the limit of
vanishing shear rate, a fact that often leads to numerical
instabilities.  In addition, the behavior is not compatible with
conservation laws that govern many complex flows.

Fig. 3 – Extended Herschel-Bulkley law.

An alternative to the standard Herschel-Bulkley model is
the use of continuous functions which apply to sheared
regimes, and in addition, through and into the plug zone.  One
such example model is suggested by Souza, Mendez and
Dutra (2004), that is,  = {1 – exp(-0 d/dt /0)}{0 + K
(d/dt) n}, which would apply everywhere in the problem
domain.  The corresponding apparent viscosity N, for
numerical implementation in Eq. 4, is denoted by

 = /(d/dt)
   = {1 – exp(-0 d/dt /0)}{0/(d/dt) + K (d/dt) n-1}        (6)

The “apparent viscosity vs shear stress” and “shear stress vs
shear rate” diagrams, from Souza et al, are duplicated in Fig.
3.  What are the physical consequences of this model?  Eq. 6,
in fact, represents an “extended Herschel-Bulkley” model in
the following sense.  For infinite shear rates, one would
recover  = 0 + K (d/dt) n.  But for low shear rates, a simple
Taylor expansion leads to  {0(d/dt) /0}{0/(d/dt) + K
(d/dt) n-1}  0 where it is clear now that 0 represents a very
high viscosity for the plug zone.  The use of Eq. 6 in
numerical algorithms simplifies both formulation and coding
since internal boundaries and plug domains do not need to be
determined as part of the solution.  A single constitutive law
(as opposed to the use of two relationships in Eq. 5) applies
everywhere, thus simplifying computational logic; moreover,
the continuous function assumed also possesses continuous
derivatives everywhere and allows the use of standard
difference formulas.  Cumbersome numerical matching across
internal boundaries is completely avoided.  In a practical
computer program, the plug zone viscosity might be assumed,
for example, as 1,000 cp.  In fact, we choose high values of 0

which would additionally stabilize the numerical integration
schemes used.  This strategy is applied throughout this work,
both to the iterative relaxation schemes for steady-state
problems and to the transient integration schemes for more
complicated formulations.  This new approach was first
discussed in Chin and Zhuang (2010) for steady flows and has
since been incorporated in the fully transient annular flow
modeling approaches.

Borehole axis radius of curvature.  Borehole axis
curvature is important to ultra-deepwater drilling, especially in
short and medium radius turning applications.  Several aspects
of cuttings transport and debris removal are not completely
understood insofar as centrifugal effects are concerned and a
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study of curvature effects contributes to an understanding of
their influence on stress fields.  Also, bends in pipelines and
annuli are interesting because they are associated with losses;
that is, to maintain a prescribed volume flow rate, a greater
pressure drop is required in pipes with bends than those
without.  This is true because the viscous stresses acting along
pipe walls are higher.  The modeling of borehole axis
curvature effects for problems involving noncircular ducts and
highly eccentric annuli containing non-Newtonian fluids was
first addressed in Chin (2001), where detailed derivations,
equations and computed examples are given.  Essentially, it is
shown how, by replacing “1/  P/z” with an inertially
corrected “1/  P/z - 1/R u/r + u/R

2” where R is the
radius of curvature, the effective pressure gradient accounting
for centrifugal effects is properly and stably modeled.  This
model is incorporated into Eq. 4 and a radius of curvature
entry appears in the software menu in Fig. 4a at the bottom
left.

Steady and Transient Formulations:
User Interface and Physical Modeling Capabilities

Simulators for two-dimensional steady and transient flow
are described in this paper, applicable to single-phase,
Herschel-Bulkley fluids, which may also be operated in
Newtonian, power law and Bingham plastic modes.  For
Bingham plastic and Herschel-Bulkley fluids, the generalized
rheological approach is used and plug zone sizes and shapes
are determined automatically whatever the eccentric annular
geometry.  The intuitive user interface shown in Fig. 4a
requires only an elementary understanding of engineering
vocabulary and the simulator may be operated with minimal
training.  Annular geometry is defined by entering center
coordinates and radii in the upper left menu.  Clicking ‘Show
Annulus’ provides an instantaneous display of the geometry
assumed, plus a typical curvilinear grid, e.g., as illustrated in
Fig. 4b, whose mesh density may be coarsened or refined at
run-time.  In addition, online editing utilities allow the
baseline eccentric circles to be edited for washout, cuttings
bed or fracture modification effects.

Fig. 4a – Steady flow user interface.

Fig. 4b – Quick annular geometry and curvilinear grid display
mode.

Rheological parameters for the general Herschel-Bulkley
fluid are entered into the input boxes at the upper right of Fig.
4a.  Four model are possible by choosing the values of n, K
and 0 appropriately.  Newtonian fluids require n = 1 and 0 =
0, while power law fluids allow general n with vanishing 0.
On the other hand, Bingham plastics require n = 1 and non-
vanishing 0, while all three parameters may be generally
assumed in the case of Herschel-Bulkley fluids.  Fig. 4c also
shows two utilities for n and K determination in the case of
power law fluids, that is, assuming Fann dial readings or
viscosity and shear rate data are available.

Fig. 4c – Determining n and K for power law fluids.

It is clear from Figs. 4a – 4c that several important
auxiliary capabilities have been built into the overall
algorithm.  First, the axis of the borehole need not be straight;
it may be curved, with any constant value for radius of
curvature, to model short, medium and large radius turning of
the borehole in offshore applications.  This properly accounts
for centrifugal effects which will affect the relationship
between pressure gradient and volume flow rate.
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Second, the drillpipe may move in either direction
relative to the borehole, that is, constant speed translational
motion is permitted.  In the simplest application, the drillstring
penetrates the formation, moves relative to the borehole  at
constant positive or negative speed, and induces a purely two-
dimensional flow everywhere; the value of this speed is
entered into the bottom left input box of Fig. 4a.  This
capability also supports steady-state swab-surge analysis, with
the mudpumps turned off or on and continuously running, as
will be illustrated in examples later.  A simple ‘Worksheet’ is
loaded by clicking ‘Swab-surge (steady)’ in Fig. 4c, which
prompts the user for tripping mode and speed.  The positive or
negative induced volume flow rate is calculated and added to
the flow rate specified at the mud pump.  Two calculation
modes described in the next paragraph was developed for
swab-surge and other drilling and cementing applications.

The option boxes immediately above the ‘Control Panel’
in Fig. 4a show how two computational modes are supported.
In the first, the applied axial pressure gradient is specified and
volume flow rate (together with detailed field solutions for all
physical properties) is calculated.  In the second, volume flow
rate is specified and pressure gradient (together with all field
properties again) is determined iteratively.  The algorithm
involves some subtlety because, as will be described in the
application for swab-surge, the directions for drillpipe motion
and net volume flow rate need not be correlated.  For the
“flow rate specified” mode, an initial pressure gradient is
assumed for which a test rate is calculated and compared
against the target rate; if the results do not satisfy a tolerance
of 1%, a half-step correction procedure is applied to the test
gradient and the calculations are repeated to convergence.
Typically, the “pressure gradient specified” mode requires 2-3
seconds or less for a complete solution, while the “flow rate
specified” mode may require up to ten seconds.

Fig. 4d – Transient flow user interface.

The foregoing remarks, focusing on the screen shot in
Fig. 4a, apply to the steady flow simulator.  The corresponding
user interface for transient incompressible flow is shown in
Fig. 4d.  Now, instead of Eq. 4, fully unsteady effects are
computed from its transient extension, but rewritten in custom
curvilinear coordinates applicable to the particular geometry
under consideration.  The above menu contains similar
geometry and rheology definition modules, however, general,
coupled, transient functions for pipe or casing axial
reciprocation, inner circle rotation and pressure gradient are
permitted.  Additional input boxes for time step selection to
facilitate numerical time integration are shown.  Importantly, a
database of prior runs is offered for user convenience and
education.  Clicking on a named entry at the top right of Fig.
4d automatically fills in all relevant input boxes and launches
any sub-applications programs that are required.  Users may
edit numerical values and re-run any simulations available in
the database.  Also, all graphical capabilities described in this
paper for steady flow are also available for unsteady flows.

Color displays of engineering properties.  In order to
make the mathematical models useful, every effort was
expended to automate the display of important field quantities
using two and three-dimensional color graphics.  Use of the
presentation tools is completely transparent to the engineer.
An ‘Install Graphics’ button installs all required software
quickly in a single pass; in addition, user training in operating
the integrated graphical capabilities is not required.  On
convergence of the solution, a message box (supplemented
with speech output and suggestions) summarizes basic
pressure gradient and flow rate relationships.

The menu in Fig. 5a indicates that text output and color
displays for different physical quantities are available for
display.  These quantities are post-processed from the velocity
solution and made available for important engineering
reasons.  For example, Chin (1992, 2001) shows that apparent
viscosity is vital to evaluating spotting fluid effectiveness in
freeing stuck pipe.  On the other hand, viscous stress (at the
cuttings bed) is important to studying hole cleaning in
horizontal and deviated wells, while velocity and viscosity
play dominant roles in vertical well cuttings transport.

Fig. 5a – Graphical solution display options.
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Fig. 5b displays results for axial velocity, apparent
viscosity, shear rate, viscous stress, dissipation function and
Stokes product in simple “planar plots.”  For the all-important
velocity results, additional displays using three-dimensional
color capabilities are offered as indicated in Fig. 5c.  These
capabilities, which include contour plots and mouse-rotatable
perspective displays, are available for all mesh combinations,
ranging from coarse to fine, selected by the user at run-time.
These tools, plus text output, are useful in supporting detailed
report generation.

Fig. 5b – Planar color displays of key physical field quantities.

Fig. 5c – Three-dimensional, color displays (contour maps and
mouse-rotatable perspective views).

Modeling borehole geometric irregularities.  For
convenience, the main input screen in Fig. 4a accepts off-
centered circles only.  When center coordinates and radii are
entered for inner and outer circles, an information box
displays the calculated value for dimensionless eccentricity, to
provide a useful reference point for drilling applications.
Built-in error checking prevents circle cross-overs.  At run-
time, both inner and outer circle coordinates may be changed
at the user’s option.  As shown in Fig. 6a below, existing
contour coordinates are displayed, which may be modified
without restriction.  The changes elected for the example
shown invoke changes to seven points only, in order to
describe a simple washout; this convenient online editing tool
can be used to draw washouts, cuttings beds and fracture
indentations of any shape.  While Fig. 6a provides a simple
“planar plot” of velocity, Fig. 6b provides more detailed three-
dimensional resolution.  Interestingly, for the simulation
shown, the presence of the washout allows a 30% increase in
flow rate for the same pressure gradient.  General conclusions
are not possible, and appropriate results must be made on a
case-by-case basis.

Fig. 6a – Modifying eccentric circle at run-time for washouts.
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Fig. 6b – Color display of velocity field with washout.

Yield stress modeling.  As noted earlier, yield stress
modeling in eccentric annuli is important to both drilling and
cementing applications.  The use of the generalized Herschel-
Bulkley constitutive model correctly predicts plug zone size
and shape for all geometries.  Because a continuous flow
model is used, which guides the evolution of a single
continuous velocity field, the computational difficulties
associated with distinct internal boundaries and infinite
viscosities are avoided.  The method, we emphasize, will
predict realistic plug zones with rapid gradients when they
exist, as shown in Fig. 7a.

More interesting results are shown in Fig. 7b, in which
plug zones for (1) a stationary pipe, (2) a pipe moving
opposite to the direction of net flow, and (3) a pipe moving in
the same direction of the main flow, are shown.  Such
computations are important in swab-surge applications and
accurate pressure modeling.  Plug zones associated with yield
stress, of course, are important to understanding cuttings
transport in drilling and fluid mixing in cementing.  Again, no
special procedures are required on the part of the user, as all
dynamical features are computed automatically for both yield
stress and non-yield fluids.  Computation of plug zone flows
requires no additional effort in terms of processing time and
memory resources.

Fig. 7a – Typical velocity results for eccentric annulus
with plug flow.

Fig. 7b – Non-Newtonian plug flow velocity profiles with
stationary pipe (left), pipe moving opposite to flow (middle), and

pipe moving with flow (right).

Swab-Surge Applications

During tripping, drill pipe run rapidly into the borehole
may create large “surge” pressures that can lead to lost
circulation and formation fracture.  On the other hand, when
pipe is removed too quickly, large “swab” (or negative surge)
pressures may be induced that can lead to kicks and blowouts.
Numerous models have been developed for swab-surge
applications over the past three decades which are based on
different physical assumptions.  The earliest models assume
steady-state flows in which borehole fluid reacts
instantaneously to drillbit movement and develops fully
established annular flow profiles.  In this paper, we address
both steady-state and fully transient models for incompressible
non-Newtonian flow.

Recently, “transient models” have become available
which are supposedly more realistic for practical application.
The literature on transient modeling, however, is wrought with
unsubstantiated claims, imprecise terminology, and very
likely, fortuitous agreement with data.  From a fluid-
mechanical perspective, “transient” may include two distinct
effects which may act independently or in concert.  One can
have transient incompressible flow in which the effects of
fluid inertia are to be assessed; on the other hand, one might
consider water-hammer effects in which the effects of fluid
compressibility and acoustic-type pressure waves are
important.  Of course, both types of transients can co-exist in
the borehole, in much the same way that it is possible for a
child to shout in a blowing wind.

The literature, unfortunately, does not distinguish
between the two types of transients.  Reference to the single
differential equation often cited shows a crude one-
dimensional model that has remained unchanged over the
years, that is, one for compressible water-hammer signal
propagation.  This alone points to what cannot be modeled and
the limitations are substantial.  For instance, these limitations
would include the effects of hole eccentricity, actual
rheological effects, and pipe movement relative to the hole, an
important consideration in swab-surge applications given that
tripping speeds can be comparable to fluid speeds.  Computed
results usually presented to validate the models neglect these
considerations.

The rigorous development of swab-surge models
requires a firm foundation based on solid mathematics.
Whether the flow is steady, or transient in both of the
foregoing senses, accurate hydraulic models that represent
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eccentricity, rheology and pipe movement are necessary.
Several limits must be considered in the design of “building
blocks” for general application.  Consider first the
conventional surge problem in (a) of Fig. 8 in which pipe is
run into the hole and mudpumps are turned off.  Displacement
of mud beneath the drillbit induces an upward (positive)
annular flow.  When mud flows while tripping in, as in the
case of continuous-circulation managed pressure drilling, the
positive annular flow is enhanced, as illustrated in (b) of Fig.
8.  In both (a) and (b) of Fig. 8, the net effect is an upward
positive flow in which the pipe moves in a direction opposite
to the net motion.  In this sense, surge flow modeling is
simple.

On the other hand, consider the swab flow in (c) of Fig. 8
without pumping.  Pulling pipe induces a downward
(negative) flow to fill the void left by the retreating drillbit; as
shown, the pipe and the net flow always occur in opposite
directions.  When mud flows, however, two possibilities arise.
A very slow pump rate can leave the net flow downward, as
shown in (c) of Fig. 8.  However, a higher flow rate will have
both net flow and pipe motion in the same upward direction,
as shown in (d) of Fig. 8, in contrast to (b) of Fig. 8.  These
observations are, in a sense, obvious, but the four possible
flow configurations shown complicate the software logic used
in automated swab-surge analysis for “volume flow rate
specified” calculations.

In the model, the surface mudpump rate may be zero or
positive, while the drillpipe speed may be positive or negative;
when the net volume flow rate is specified, the iterative
algorithms determine the corresponding axial pressure
gradients taking into account the direction of the pipe motion.
Typical computing times for this “flow rate specified” mode
range from ten to twenty seconds.  We emphasize that motion
of the pipe relative to borehole walls is an essential part of the
formulation that cannot be neglected and that this crucial
modeling element is not possible with existing models.  In
addition, it is mathematically incorrect to obtain swab-surge
solutions by subtracting those pressure gradients associated
with the mudpump flow alone and the drillbit-induced volume
flow alone: as will be seen in one illustrative calculation, the
flow rate versus pressure gradient relationship is nonlinear for
general non-Newtonian fluid rheologies.

(a) (b) (c) (d)

Mud Mud

Fig. 8 – Swab-surge with and without circulation.

For the remainder of this paper, we focus on specific
swab-surge job planning calculations, through a series of
specially designed examples that draw attention to the new
capabilities built into the mathematical formulations.  We
emphasize that all models are developed rigorously from first
principles and solved using fast and stable computational
methods.  Here the objective is a to-the-point demonstration of
new methodologies useful for field application.

Example 4-6.  Steady-state swab-surge in eccentric
annuli for power law fluids with and without
circulation (no rotation).

In this example, we discuss applications of the steady-
state, non-Newtonian flow simulator to swab and surge
analysis for eccentric annuli with and without mud circulation.
This problem is important and complementary to new
hardware capabilities in managed pressure drilling that allow
continuous mud circulation while tripping in and out of the
hole.  We focus implicitly on long deviated and horizontal
wells for which hole eccentricity is very important.  Existing
models are either concentric, which are inapplicable, or one-
dimensional, in which case any details of the annular cross-
section are impossible to model.  Therefore, this work
describes completely new methods that support accurate
prediction of pressure distributions in the hole.

z

z = 0z =  L

P = Psurf
P = Psurf  L P/z

L

z

z = 0z =  L

P = Psurf
P = Psurf  L P/z

L

Fig. 4-6a – Coordinate system and conventions.
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Basic concepts.  The simulator predicts the constant
pressure gradient P/z needed to induce a specified volume
flow rate Q for any Herschel-Bulkley fluid in an eccentric
annulus.  By convention, when Q is positive or “flowing to the
right,” the pressure P falls in the direction of increasing z.
Analogously, when Q is negative or “flowing to the left,” P
increases with increasing z.  Let us first consider flows
without mud circulation.  In the top diagram of Fig. 4-6a, the
drillpipe and bit are shown moving toward the bottom of the
hole and displacing fluid as it moves to the left.  This fluid
must then flow to the right as shown and will produce a
positive Q.  Now, the governing equation for pressure is
simply P = z P/z + constant.  If z = 0 represents the surface
where P = Psurf is fixed by the driller and z = – L is the bit
location with L being the borehole length, then the pressure at
the bit is just Pbit = – L P/z + Psurf.  Since P/z < 0, we have
Pbit >> Psurf which formally shows that in a “surge” situation
the bottomhole pressure greatly exceeds that at the surface.
Next consider the bottom diagram in Fig. 4-6a.  Here we
“swab” the drillstring, pulling it out of the hole.  To fill the
void left by the drillbit, the flow Q must travel toward the left,
for which we have P/z > 0.  Then, Pbit = – L P/z + Psurf

implies that Pbit << Psurf which formally shows that pressure is
greatly reduced at the bit.  Increased pressures at the bit are
associated with formation invasion and the possibility of
fracturing the rock, while decreased pressures may increase
the likelihood of blowouts.

The main simulation objective is accurate prediction of
Pbit as a function of annular geometry, fluid rheology and
(positive or negative) tripping speed in the presence of mud
circulation at any pump rate.  In order to produce meaningful
results, the simulator must be able to model general
eccentricities, arbitrary Herschel-Bulkley parameters, plus
non-zero drillpipe speeds for any pump rate, as the steady-
state flow simulator described here will in an exact manner.
There are several scenarios that must be considered in
addressing this problem which are outlined in Fig. 4-6b.
Surge situations, as shown in diagrams (a) and (b), are
straightforward to model.  In (a) without mud flow, the net
flow Q > 0 simply flows to the right.  When mud is pumped
down the drillstring, as shown in (b), the flow rate Q is simply
increased, as shown by the exaggerated velocity profile.  Swab
scenarios are slightly more subtle.  In (c) without mud flow,
pulling the drillstring out of the hole induces a negative flow
Q < 0 to the left.  In (d), mud is pumped down the drillstring at
a low pump rate.  If the rate is low enough, Q will still be
negative.  On the other hand, if the pump rate is high, as
suggested in (e), the net flow will come out of the hole, with Q
> 0 now being positive.  In this limit, pulling the drillstring out
of the hole is consistent with pressures at the bit that exceed
those at the surface.  These five scenarios are obvious in
retrospect, and we have summarized them only because they
do not arise in more conventional studies where mud does not
circulate.  Note that the equation “Pbit = – L P/z + Psurf ” is
all that is necessary to calculate pressure at the bit.  Again, L is
the hole or drillstring length, Psurf is the known pressure at the

surface choke, and P/z represents output produced by the
simulator.

(a)

(b)

(c)

(e)

Mud

Mud

(d) Mud

Fig. 4-6b – Five scenarios in continuous flow managed pressure
drilling.

Macroscopic rheological properties.  Unlike
Newtonian flows where the viscosity is a constant once and
for all (assuming no pressure or temperature dependencies),
the apparent viscosity in a non-Newtonian flow varies
throughout the cross-section, and depends on geometrical
details plus flow rate or pressure gradient.  This is not to say
that it is unimportant: it is a useful correlator for cuttings
transport and hole cleaning efficiency and may be significant
in stuck pipe assessment.  Apparent viscosity, we emphasize,
is not a property intrinsic to the fluid, however, for Herschel-
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Bulkley fluids, “n,” “K” and “0” are.  These “microscopic”
properties are inputted into the simulator to created an all-
important “pressure gradient vs flow rate curve” that describes
“macroscopic” properties for the overall flow.  This curve is
important to swab and surge analysis: once the combined flow
rate due to surface pumping plus tripping is known, it gives
the pressure gradient required for use in the equation “Pbit = –
L P/z + Psurf .”  We will give examples of different curves
obtained for different fluid types and annular geometries next.
We will introduce the basic analysis concepts by way of
software modules that have been developed to host the
calculations.

Newtonian fluids.  The three Herschel-Bulkley
parameters noted above can be determined from viscometer
measurements using any number of regression techniques
available in the literature (for zero-yield flows of Newtonian
and power law fluids, n and K can be determined using
integrated software utilities).  Once these are available, they
are entered into the top right text boxes of the simulator
interface in Fig. 4-6c-1 where, for the present example, we
have assumed the properties of water at 1 cp.    For the
concentric geometry indicated, clicking on “QuikSim” leads to
a flow rate of 943.5 gpm.  Next, in Fig. 4-6c-2, we increase
the eccentricity  from 0.0 to 0.667 for the same input
parameters, and obtain the greatly increased flow rate of 1,521
gpm (it is well known that increases in eccentricity generally
lead to increases in flow rate under the same assumed pressure
gradient).   Figures 4-6c-1 and 4-6c-2 represent the results of
“single analysis mode” simulations when detailed results like
those in Fig. 5b are required.  Much quicker results are
obtained when the option in Fig. 4-6c-3 is selected.  This
option ignores the “pressure gradient specified” or “flow rate
specified” prescriptions, and leads, within a minute or two, to
the results in Fig. 4-6c-4, here for the eccentric annulus.  It is
important to observe two features characteristic of Newtonian
flows.  First, the “pressure gradient vs flow rate curve” passes
through the origin; second, the curve is a straight line whose
slope depends only on the geometry of the annulus.  Once this
slope is determined for a specific eccentric annulus at any
given pressure gradient, either computationally or
experimentally, the same applies to all pressure gradients.  In
this sense, Newtonian flows represent an exception to general
nonlinear fluid rheologies, where every case must be treated
on an individual basis.  The straight line nature of the curve
means that changes in flow rate lead to proportional changes
in pressure gradient.

Fig. 4-6c-1 – Newtonian concentric ( = 0.0) flow.

Fig. 4-6c-2 – Newtonian eccentric ( = 0.667) flow.

Fig. 4-6c-3 – Newtonian dp/dz vs flow rate calculation ( = 0.667).
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Fig. 4-6c-4 – Newtonian dp/dz vs flow rate behavior ( = 0.667).

Finally, we note that for the “pressure gradient vs flow
rate curve” option in Fig. 4-6c-3, we had fixed the pipe or
casing speed to zero for the calculations.  In general, this can
be a positive or negative constant, making the resulting curve
useful in swab-surge applications when tripping at rapid
speeds (compared to a nominal speed in the annulus).  We will
give example calculations later in this example.

Power law fluids.  Next we reconsider the above
concentric and eccentric geometries for zero-yield power
fluids with n = 0.415 and K = 0.0000944 lbf secn/in2 (this
unweighted mud was used in a recent laboratory study).  The
significant departure of ‘n’ from unity implies large
nonlinearities.  This is reflected in the highly curved lines
found in Figures 4-6d-1 and 4-6d-2, showing that incremental
changes in flow rate do not lead to proportional changes to
pressure gradient – the exact changes are rate dependent.  Also
note the significant differences going from concentric (vertical
well) to eccentric (deviated or horizontal well) applications.
These results serve as a warning that models based on over-
simplified geometric assumptions can lead to operational
hazards.

Fig. 4-6d-1 – Power law concentric flow ( = 0.0).

Fig. 4-6d-2 – Power law eccentric flow ( = 0.667).

Swab and surge examples.  Now we consider an
application for “tripping with pumps off” and also “with
continuous circulation” which demonstrates the subtleties of
flow nonlinearity.    If we invoke the “Swab-surge (steady)”
option from the utilities menu in the main “Steady 2D”
interface, we obtain the Swab-Surge Worksheet in Fig. 4-6e-1
(the embedded calculations conservatively assume that the
drillbit completely blocks the annulus and that fluid does not
pass through the nozzles).  We at first turn off the mudpump
while assuming a hole radius of 4 in and a “tripping in” speed
of 5,000 ft/hr.  The Worksheet indicates that, following the
convention of Fig. 4-6a, we have a positive induced flow rate
of +217.6 gpm while the drillpipe speed is negative with a
value of –16.67 in/sec (the drillbit is assumed to completely
block the hole).  The Worksheet instructs the user to enter
“217.6” and “–16.67” as we have in Fig. 4-6e-2 for the
eccentric annulus and power law fluid assumed.  Clicking on
“Show Annulus” produces the display in Fig. 4-6e-3.  Then
the required axial pressure gradient P/z is – 0.006494 psi/ft
(minus values indicate high surge pressures at the bit).

Fig. 4-6e-1 – Assumptions for surge run with pumps off.

Fig. 4-6e-2 – Additional assumptions, surge run with pumps off.
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Fig. 4-6e-3 – Eccentric annulus and curvilinear grid assumed
(internal grid used in computations is finer).

Fig. 4-6e-4 – Assumptions for surge run with pumps on.

Fig. 4-6e-5 – Additional assumptions, surge run with pumps on.

Now, consider an identical situation except that the pump
is circulating at 500 gpm.   The screens analogous to Figures
4-6e-1 and 4-6e-2 are given above.  Clicking on “QuikSim”
(as before) shows that the required pressure gradient now
becomes – 0.01045 psi/ft.  This pressure drop is steeper than
before, as expected, because the flow rate is higher.  It is
interesting that the flow rate ratio between the two runs above
is 717.6/217.6 or 3.30.  The ratio of pressure gradients,
however, is 0.01045/0.006494 or 1.61.  In a Newtonian flow,
the “3.30” and “1.61” numbers would have been identical.
For non-Newtonian flows, they typically are not, and general
conclusions cannot be given – results must be found by case-
by-case computations.  This example points to the danger of
using Newtonian models even for crude estimates.

In the next calculation, we consider “tripping out” in a
swab application with the mud pumps off.  Instead of
“+217.6” and “-16.67” as we had before, Fig. 4-6e-6 shows
that the relevant numbers are reversed, with “-217.6” and
“+16.67.”  When these replace their counterparts in Fig. 4-6e-

2, “QuikSim” analysis correctly shows that the applied
pressure gradient is now + 0.006494 psi/ft instead of the
previous – 0.006494 psi/ft.  This positive sign, as discussed
earlier, indicates lower pressures relative to those at the
surface.  Now let us recall the equation “Pbit = – L P/z + Psurf

” for pressure at the drillbit.  Suppose that Psurf = 14.7 psi is
open to the atmosphere.  Then, we can express bit pressure in
psi if L is given in feet via Pbit = 14.7 – 0.006494 L.  In this
example, Pbit vanishes if L = 2,264 feet, at which point the
possibility of a blowout increases significantly.

Fig. 4-6e-6 – Assumptions for swab run with pumps off.

What would be the effect if, as in Fig. 4-6e-4, we ran the
mudpump at 500 gpm?  The corresponding Swab-Surge
Worksheet would appear as it does in Fig. 4-6e-7, showing a
net flow rate of 282.4 gpm.  The calculation suggested by Fig.
4-6e-8 gives a negative pressure gradient of – 0.005811 psi/ft.
This shows that the 500 gpm pump rate is enough to prevent
overly low pressures when tripping out at 5,000 ft/hr.  While
we have focused on low pressures that may allow blowouts, it
is obvious that a similar analysis allows us to select pump
rates that will not fracture the formation when the fracture
gradient is known.

Fig. 4-6e-7 – Assumptions for swab run with pumps on.

Fig. 4-6e-8 – Additional assumptions for swab run with pumps on.
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Neutral pressure gradient operation.  The simulator
allows us to pose and solve still another problem of interest in
swabbing operations.  Suppose, as in the above, we wish to
trip out at 5,000 ft/hr or 16.67 in/sec.  We found from a prior
analysis that this action is responsible for a negative flow rate
of – 217.6 gpm, with the left-bound annular fluid flow arising
from the need to fill the borehole void left by the retreating
drillstring.  We ask which net flow rate would allow us to
maintain a “neutral pressure gradient” of 0.00 psi/ft, that is,
one that allows us to have a constant pressure along the
annulus equal to the surface choke pressure.  If we run the
simulator with +16.67 in/sec and 0.00 psi/ft in “specify axial
pressure gradient” mode, we obtain a net flow rate of 53.52
gpm.  This 53.52 gpm is, of course, the flow rate obtained by
simply dragging the drillstring along without an imposed
pressure gradient.  In other words, the pump must be operated
at 217.6 + 53.52 or 271.1 gpm to create a simple dragging
flow and to produce the required zero pressure gradient.

This “reverse thinking” can be verified directly.  It is
easily validated by the forward calculation in Fig. 4-6e-9.
This calls for us to enter 53.52 in the volume flow rate screen
of Fig. 4-6e-10.  Clicking “QuikSim” leads to an extremely
small value of – 0.00001221 psi/ft which allows us to impress
surface choke pressure directly on the drillbit.  Pressure is
constant along the borehole.  This predictive capability is a
direct result of the ability to model drillpipe movement in a
rigorous computational manner in very complicated borehole
environments.  We again note that the simulator was applied
to a highly nonlinear power law fluid with pipe movement in a
very eccentric annulus.

Fig. 4-6e-9 – Surface mudpump rate needed for vanishing
axial pressure gradient while tripping out.

Fig. 4-6e-10 – Calculation providing zero axial pressure gradient.

Example 4-7.  Steady-state swab-surge in concentric
annuli for power law fluids with drillpipe rotation and
slow pipe movement.

The approach taken to model swab-surge effects in
Example 4-6 is straightforward.  Basically, the Swab-Surge
Worksheet is used to compute a kinematic volume flow rate
correction to the mud pump flowrate that accounts for changes
in void space near the drillbit due to tripping out or in.  The
new flow rate is then used in the annular flow analysis
together with the correctly signed drillpipe speed.  We employ
this approach throughout for swab-surge applications.  When
the drillpipe rotates, a closed form analytical solution for the
complete flowfield can be developed which allows general
steady rotation at any rpm provided the annulus is concentric
and stationary in the axial direction.  This latter assumption is
satisfactory for slow tripping speeds, as they invariably should
be in operations, given safety considerations.  The simpler
simulator is accessed as shown in Fig. 4-7a.

Fig. 4-7a – Concentric, rotating, power law flow.

Four run-time options are shown in the above screen.
The first two provide detailed results for single run-sets.  The
third and fourth options provide fast calculations for “GPM vs
RPM and dP/dz” and “dP/dz vs RPM and GPM,” typically
requiring about fifteen seconds of computing time, with
automated three-dimensional color plots that allow zooming
and mouse rotation.  Results shown in Figures 4-7b,c clearly
illustrate the roles of rotation and pressure gradient that must
be understood in managed pressure drilling applications.
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Fig. 4-7b – GPM vs RPM and dP/dz.

Fig. 4-7c – dP/dz vs RPM and GPM.

We emphasize that the foregoing results are for
concentric annuli.  For such problems, certain inertial terms in
the axial momentum flow equation vanish identically and non-
Newtonian effects enter only through shear-thinning.  When
eccentricity is important, the fully transient solvers can be
used to model not only unsteady flows, but steady flowfields
induced by constant rotation rates.  Figures 4-7d and 4-7e
display typical computed results for a highly eccentric
annulus.  In these calculations, a spatially-dependent inertial
correction to pressure gradient (which is proportional to fluid
density and rotation rate, and inversely proportional to
apparent viscosity) acts in such a way that the point of
maximum axial speed (normally at the widest part of the
annulus) now shifts azimuthally.

Fig. 4-7d – Maximum axial velocity location shifts sideways as
pipe rotates (left), azimuthal velocity field (right).

Fig.  4-7e – Axial velocity distribution as rotation rate increases
from left to right from 0 to 400 rpm.

Example 4-8.  Steady-state swab-surge in eccentric
annuli for Herschel-Bulkley fluids with drillpipe
rotation and axial movement.

In Example 4-7, we addressed pressure gradient
computations for general flow rates and rotation speeds for
power law fluids in a concentric annulus under steady
conditions without axial pipe movement.  For such flows, the
convective terms in the momentum equations vanish
identically.  The effect of rotation is restricted to shear-
thinning so that, for a given pressure gradient, increases in
rotation rate will reduce apparent viscosity and increase
volumetric flow.  These effects are well known in the older
literature and apply mainly to vertical wells.

Run A.  In deviated and horizontal wells, annular
eccentricity is the rule, and while shear-thinning remains
important, a nonlinear convective term (whose magnitude is
proportional to fluid density and pipe rotation speed and
inversely proportional to apparent viscosity, and which is
variable throughout the annular cross-section) appears and
modifies the local axial pressure gradient.  For most practical
geometries, this will reduce the flow relative to that found for
the eccentric non-rotating problem for the same applied
pressure gradient.  Equivalently, for the same flow rate, the
pressure drop increases significantly.  These properties are
important in managed pressure drilling.
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Fig. 4-8a-1 – Transient 2D flow menu (no rotation).

The direct computation of steady rotating flow in an
eccentric annulus is often an unstable numerical process if
calculated from a purely steady formulation.  Solutions have
been published by various authors who have all given few
computational details related to convergence properties and
computing times.  Such schemes tend to destabilize at higher
specific gravities and rotation speeds, and unfortunately, in the
ranges typical of most drilling applications.  Fortunately,
steady rotating flow solutions can be stably computed by
solving the transient formulation asymptotically for large
times.  In Fig. 4-8a-1, we have set up flow simulations for a
power law fluid in an eccentric annulus with axial pipe
movement but no rotation.  The problem is integrated in time
starting with quiescent conditions.  Fig. 4-8a-2 shows
computed volume flow rates reaching constant levels at 941.0
gpm after about one minute of computing time (this is
interestingly, but fortuitously, also the physical time scale)
with convergence to steady-state achieved very stably.  The
maximum axial flow speed is found, as expected, at the wide
side of the annulus.

Fig. 4-8a-2 – Eccentric power law results without pipe rotation.

Run B.  Repeating the foregoing simulation to allow
drillstring rotation is straightforward.  For example, we simply
change the “0” in the RPM box to “100” (as seen from Fig. 4-
8b-1) and completely automated calculations lead to a reduced
flow rate of 562.2 gpm as shown in Fig. 4-8b-2.  As is well
known, the location of maximum axial velocity moves
azimuthally, and the results are consistent with this
observation, a fact that may be useful in cuttings transport and
hole cleaning applications.  Computed results also indicate
that the time to reach equilibrium decreases with rotation.  The
results presented here, for pipe moving both axially and
azimuthally, show that pressure gradient calculations are
doable and straightforwardly performed for general power law
fluids in highly eccentric annuli.

Fig. 4-8b-1 – Modified flow with 100 rpm drillstring rotation.

Fig. 4-8b-2 – Reduced flow rate achieved in shorter time.

Run C.  In the next calculation, we repeat that in Fig. 4-
8b-1, which included axial pipe movement and nonzero
rotation speed in addition to borehole eccentricity and non-
Newtonian power law flow, but now consider the additive
effects of Herschel-Bulkley yield stress.  In Fig. 4-8c-1, we
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modify the previous “0” to “0.002 psi” and leave all other
parameters unchanged.  As before, the calculations require
about 30 seconds and are performed stably.

Fig. 4-8c-1 – Flow at 100 rpm now with 0.002 psi yield stress.

Fig. 4-8c-2 shows that the volume flow rate is reduced
from 562.2 gpm to 516.9 gpm, for a 9% reduction.  One might
have asked what the required pressure gradient would be for
the yield stress fluid if we needed to maintain a 562 gpm flow
rate.  For the steady flow solver, direct “pressure gradient
specified” and inverse “flow rate specified” calculation modes
were available.  For mathematical reasons, this is not practical
for transient simulations.  A simple procedure requires us to
manually attempt reasonable pressure gradient guesses.  This
procedure can be very efficient.  For this example, the author
determined that – 0.011 psi/ft would yield 562 gpm after three
tries or about two minutes of desk time.  In other words, the
presence of yield stress steepened the pressure gradient by a
substantial 10%.

Fig. 4-8c-2 – Flow at 100 rpm now with 0.002 psi yield stress.

Fig. 4-8d-1 – Flow at 200 rpm with 0.002 psi yield stress.

Run D.  Next, we will re-consider the yield stress
problem in Fig. 4-8c-1 and determine the consequences of
increasing rotation rate from 100 to 200 rpm.  The input
screen is shown in Fig. 4-8d-1.  The effect of doubling rotation
speed is a decreased flow rate for the same – 0.01 psi/ft, in this
case a much smaller 443.3 gpm, as shown in Fig. 4-8d-2.  This
effect arises from eccentricity.  And what if we had insisted on
562 gpm?  Then, some simple manual “cut and try”
calculations with different pressure gradient guesses lead to a
substantially steepened – 0.0131 psi/ft, a value that was
obtained within two minutes with four different guesses.

Favorable effect of rotation on hole cleaning. The
detailed effects of rotation and yield stress have been
discussed in the context of eccentric borehole annuli with
coupled axial drillstring movement.  These calculations
represent completely new industry capabilities.  It is
interesting to note that, from Fig. 4-8a-2 for non-rotating flow,
the location of maximum axial flow speed lies symmetrically
at the top at the wide side of the eccentric annulus.  When
rotation exists, as shown in Figures 4-8b-2, 4-8c-2 and 4-8d-2,
the location of the maximum moves azimuthally as shown,
consistently with other known investigations (note that “red”
in these three diagrams denote different speeds).  That
increased relative speeds are achieved at the bottom of the
annulus is consistent with the improved hole cleaning ability
of drillstrings under rotation observed under many field
conditions.  Of course, this improvement comes at the expense
of steepened pressure gradients, a crucial trade-off whose
value must be assessed by the drilling engineer.  The end
decision made at the rigsite will depend on “the numbers”
which can only be obtained computationally.
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Fig. 4-8d-2 – Flow at 200 rpm with 0.002 psi yield stress.

Run E.   Here we study the effect of slow-down in
drillstring rotation rate (the menus support more complicated
motions, e.g., stick-slip torsional oscillations).  Acceleration
and deceleration are always encountered in start-up and slow-
down.  We repeat the calculation of Fig. 4-8d-1, starting with
200 rpm for the nonzero yield stress fluid.  But as shown in
Fig. 4-8e-1, we allow the 200 rpm to slow down to 0, as seen
from the “- 0.5” deceleration rate selected under the RPM
menu.  Clicking on “?” to the right produces a plot of the
assumed RPM vs time curve in Fig. 4-8e-2 (note that
numerous time functions for axial pipe speed, rotation rate and
pressure gradient are permissible with the simulator).  The
calculated flow rate vs time response is shown in Fig. 4-8e-3.
This flow rate increases as expected, with drillstring rotation
rate decreasing.   In this transient simulation, the location of
maximum axial velocity is not stationary, but instead
propagates azimuthally about the eccentric annulus.  A
“snapshot” at one instant in time is shown in Fig. 4-8e-4.
Although this example is purely transient, we have included it
in the steady eccentric annular flow example to highlight the
importance (or perhaps, unpredictability) of transient effects.
The shape of the transient rate curve in Fig. 4-8e-3, we
emphasize, is obtained for a simple Herschel-Bulkley fluid
and not one with “memory” effects.

Fig. 4-8e-1 – Decreasing rotation rate, from 200 to 0 rpm.

Fig. 4-8e-2 – Linearly decreasing rpm, from 200 to 0.

Fig. 4-8e-3 – Transient increasing flow rate with decreasing rpm.
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Fig. 4-8e-4 – Transient movement of maximum point
as rpm decreases.

Run F.  In this final example, we consider a complete
steady swab-surge application with high annular eccentricity,
a nonlinear yield stress fluid, and allow the drillpipe to move
axially while simultaneously rotating.  This demonstrates the
capabilities in the math models and provides a complete
summary of the software menu sequences needed to perform
similar calculations.  In order to proceed, the “Swab-Surge
Worksheet” must be invoked from the main “MPD Flow
Simulator (Steady 2D)” in Fig. 4-8f-1.   In the Worksheet, we
consider a five-inch radius hole and a pipe trip-out speed of
5,000 ft/hr.  During this operation, we wish to pump
continuously, with the surface mudpump rate set at 856.9
gpm.  Now, as the drillpipe is withdrawn from the hole, fluid
must rush in to fill the bottomhole void.  The Worksheet
indicates that the effective annular flow rate is 516.9 gpm and
that the pipe speed in “inch/sec” units is 16.67 in/sec.

Fig. 4-8f-1 – Running the “Swab-Surge Worksheet”
(areas that do not affect Worksheet calculator are shown shaded).

Now, we wish to focus this study the non-Newtonian
flow of a Herschel-Bulkley fluid with n = 0.415, K =
0.0000944 lbf secn/in2 and 0 = 0.002 psi, in an annulus
formed by a 4 in diameter pipe in a 10 inch diameter hole,
with an eccentricity of 0.3333. We will demonstrate the
solution process for flows without and with rotation.  If we

wish to consider axial movement only but without rotation, we
can run the steady flow calculation shown in Fig. 4-8f-2 in
“volume flow rate specified” mode.  Clicking on “QuikSim”
produces the screen output iteration history shown on the
following page.

 SIMULATION STARTS ...
 Herschel-Bulkley model, with exponent "n" equal
 to 0.4150E+00 and consistency factor of 0.9440E-04
 lbf sec^n/sq in.
 A yield stress of 0.2000E-02 psi is taken.
 Borehole axis radius of curvature is 0.1000E+04 ft.
 Axial speed of inner pipe is 0.1667E+02 in/sec.
 Target flow rate of 0.5169E+03 gal/min specified.
 Iterating on pressure gradient to match flow rate ...

 Iteration  100, Error = .00672962
 Iteration  200, Error = .00248959
 Iteration  300, Error = .00119476
 Iteration  400, Error = .00052236
 Iteration  500, Error = .00019270
 Iteration  600, Error = .00005923
 Iteration  700, Error = .00001814
 Iteration  800, Error = .00000521
 Iteration  900, Error = .00000171
 Iteration 1000, Error = .00000047

 O  Axial pressure gradient of -.1000E+00 psi/ft
    yields volume flow rate of 0.4076E+06 gal/min.

 Flow rate target error is 0.7876E+05 %

 Iteration  100, Error = .00371665
 Iteration  200, Error = .00067117
 Iteration  300, Error = .00014123
 Iteration  400, Error = .00002945
 Iteration  500, Error = .00000702
 Iteration  600, Error = .00000192
 Iteration  700, Error = .00000038
 Iteration  800, Error = .00000010
 Iteration  900, Error = .00000010
 Iteration 1000, Error = .00000010

 O  Axial pressure gradient of -.5000E-01 psi/ft
    yields volume flow rate of 0.4141E+05 gal/min.

 Flow rate target error is 0.7911E+04 %
.
.
.
.

 O  Axial pressure gradient of -.6250E-02 psi/ft
    yields volume flow rate of 0.6708E+03 gal/min.

 Flow rate target error is 0.2977E+02 %

 Iteration  100, Error = .00000000
 Iteration  200, Error = .00000011
 Iteration  300, Error = .00000000
 Iteration  400, Error = .00000011
 Iteration  500, Error = .00000011
 Iteration  600, Error = .00000011
 Iteration  700, Error = .00000000
 Iteration  800, Error = .00000021
 Iteration  900, Error = .00000011
 Iteration 1000, Error = .00000000

 O  Axial pressure gradient of -.4688E-02 psi/ft
    yields volume flow rate of 0.5217E+03 gal/min.

 Pressure gradient found iteratively, -.4688E-02
psi/ft,

 to yield 0.5217E+03 gal/min vs target 0.5169E+03
gal/min.

 Note:  Iterations terminate within 1% of target rate.
 Refine result by manually changing pressure gradient.
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Fig. 4-8f-2 – Steady 2D solver.

Fig. 4-8f-3 – Computed axial velocity (non-rotating).

In other words, the pressure gradient associated with the
non-rotating flow is – .004688 psi/ft.  The corresponding axial
velocity field is shown in Fig. 4-8f-3 in a variety of available
plots.  Note that for non-rotating flows, the “Steady 2D”
solver automatically computes the required pressure gradient
using an internal inverse procedure.  It has not been possible
to develop a steady solver that allows rotation which is also
unconditionally numerically stable.  This does not, fortunately,
mean that steady rotating flows cannot be computed.

Fig. 4-8f-4 – Transient 2D solver.

We demonstrate how by considering the effect of a
moderate 100 rpm rotation rate.   We use the “Transient 2D”
solver in Fig. 4-8f-4, with input boxes completed for the same
simulation parameters.  The strategy is to solve a fully
transient problem until steady-state behavior is obtained.
Because a “flow rate specified” mode is not available for
transient calculations, one resorts to repeated guesses for
pressure gradient, but we have found that three or four will
usually lead to a flow rate within 1-2% of the target value.
Since each trial calculation equilibrates quite rapidly, as
shown in Fig. 4-8f-5, the total “desk time” required is often
two minutes or less.

For this rotating flow run, a pressure gradient of – 0.01
psi/ft is required, as compared to the – .004688 psi/ft obtained
in the non-rotating case.  In other words, pressure gradients
are twice as severe because of rotation.  The “Results” menu
in Fig. 4-8f-4 provides numerous post-processed results in
addition to those of Fig. 4-8f-5.  For example, axial and
azimuthal velocity distributions are available, as given in Fig.
4-8f-6, as are detailed color plots of different physical
properties like apparent viscosity, shear rate and viscous
stress.



AADE-11-NTCE-46 Advances in Swab-Surge Modeling for Managed Pressure Drilling 23

Fig. 4-8f-5 – Flow rate history and velocity distribution
(note, maximum axial velocities appear at annular bottom).

Fig. 4-8f-6 – Axial and azimuthal velocities at
cross-section “m = 19.”

Closing Remarks
The present paper describes new capabilities in modeling

steady and transient non-Newtonian flow in highly eccentric
annuli, with or without plug zones associated with yield stress
fluids, with realistic geometric anomalies, plus effects like
borehole axis curvature and drillpipe translation and rotation.
In addition, the option to specify either axial pressure gradient
or total volume flow rate is provided.  The rigorous fluid-
dynamical model formulated here and its exact mathematical
solution, augmented by rapidly converging algorithms and
convenient color displays, are intended to provide state-of-the-
art capabilities useful to managed pressure drilling, hole
cleaning and cementing: the focus has been swab-surge
applications.
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