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Abstract
Non-Newtonian flow in highly eccentric annuli with

cuttings beds, washouts and fractures, encountered in
cementing and drilling, are solved without crude slot flow and
hydraulic radius approximations.  The nonlinear formulation,
written to customized, boundary-conforming, curvilinear
coordinates providing high physical resolution in tight spaces,
is solved exactly with no-slip conditions, and detailed
velocities, apparent viscosities, shear rates and viscous stresses
are computed for pressure drop and hole cleaning applications.
For yield stress fluids, uncertainties related to plug zone size
and shape are resolved using generalized Herschel-Bulkley
relations applicable across transition boundaries (determined
as part of the solution) reaching into and across plugs.  Two-
dimensional, single-phase, steady flow simulations, solved
rapidly using finite differences, provide detailed numbers and
color displays for all physical quantities, with excellent
numerical stability for all fluid types with and without yield
stress.  Formulations for steady-state casing or drillpipe
reciprocation and rotation are described, and extensions to
model transient incompressible effects associated with
starting, stopping and periodic movement, important in
evaluating cement-mud displace efficiency, axial-helical
cuttings transport, and jarring remedies for stuck pipe, are
discussed.  Detailed calculations showing the effect of rotation
on flowrate or pressure gradient are given which highlight the
crucial role of hole eccentricity.

Introduction
Non-Newtonian flows in highly eccentric annuli with

cuttings beds, washouts and fractures, encountered in
cementing and managed pressure (and underbalanced) drilling,
are solved without crude slot flow and hydraulic radius
approximations.  The nonlinear partial differential equations,
written to customized, boundary-conforming, curvilinear
coordinate grid systems providing high physical resolution in
tight spaces, are solved exactly with no-slip conditions, and
detailed velocity, apparent viscosity, shear rate and viscous
stress fields are computed for pressure drop, hole cleaning and
other applications.  For fluids with yield stress, well known
uncertainties related to plug zone size and shape are fully
resolved using Herschel-Bulkley relations applicable across
transition boundaries (determined iteratively as part of the
solution) reaching into and across the plug.  Two-dimensional,
single-phase, steady flow simulations, solved rapidly using

finite difference methods, provide detailed numbers and color
displays for all physical quantities within seconds, with
excellent numerical stability for all fluid types with and
without yield stress.  Formulations for steady-state casing or
drillpipe longitudinal translation and rotation are presented,
and extensions to model transient incompressible effects
associated with starting, stopping and periodic movement,
important in evaluating cement-mud displacement efficiency,
axial-helical cuttings transport, swab-surge, and jarring
remedies for freeing stuck pipe, are developed.  Practical
problems are presented and the advantages over existing
models are described.  In this paper, extensive calculation
methods and new modeling capabilities are presented for job
planning, summarizing the approaches designed over the past
two decades.

Background

Annular flow modeling in boreholes, important to both
drilling and cementing, is as old as petroleum engineering
itself.  In the simplest case, flow configurations are
represented by concentric circles through which steady, two-
dimensional, Newtonian and power law fluids flow; in these
limits, exact analytical or numerical solutions of the flow
equations provide useful tools for operational applications.
For more complicated problems, e.g., eccentric annuli, non-
ideal geometric irregularities, non-Newtonian yield stress
fluids, pipe translation and rotation, however, numerous
mathematical obstacles arise, which unfortunately introduce
inefficiencies into field practices.  We discuss these problems
next.

Geometric complications.  In deviated and horizontal
wells, heavy pipe and drill collar weight implies eccentric
positioning within the borehole, as shown in (a) of Fig. 1,
leading to difficulties in geometric description and solution.
High eccentricities are often accompanied by non-symmetrical
washouts, thick and irregularly formed cuttings beds, and
possibly, fracture indentations.  Early in petroleum
engineering, the notion of a simple “mean hydraulic radius”
permitting representation as an equivalent circular pipe flow,
as depicted in (b) of Fig. 1, was widely employed; this
approach, however, was not useful since what is meant by
“mean” is not obvious and certainly not generally applicable
from one situation to the next.  Later “slot flow” models
“unwrapped” the eccentric annulus, with the result as
illustrated in (c) of Fig. 1, and then, further discretized the

AADE-11-NTCE-73      

Comprehensive Annular Flow Models for Drilling and Completions
Wilson Chin and Xiaoying Zhuang, Stratamagnetic Software, LLC



2 Wilson Chin and Xiaoying Zhuang AADE-11-NTCE-73

resulting slot into local parallel plate elements, each of which
is approximately modeled by simple solutions for fluid flow
between ideal parallel plates.  While somewhat reasonable,
this approach applied strictly to very narrow annuli, but even
then, curvature terms in the general governing momentum
equations are always neglected.  Thus, inertial effects are
never properly modeled even in the limit of very narrow
elements.

Fig. 1 – Idealizations commonly used to represent eccentric
borehole annuli.

Improvements to slot flow models are provided by “pie
slice” formulations, idealized in (d) of Fig. 1, in which
eccentric annuli are represented by “pie slices” of varying size
and included angle having the pipe center as a virtual origin.
The solution for each slice is taken from the numerical
solution for a concentric annular problem with a closely
matched radius.  In this approach, pie slices ranging from
small to large are used.  However, it is clear from the sketch
that perfect geometric matching of the borehole boundary is
never completely achieved, so that adequate modeling of
curvature effects is approximate at best.  Moreover, the
concentric solutions used are numerical in the case of yield
stress fluids and awkward in implementation.  More recently,
authors have used “bipolar coordinates” to represent eccentric
circles, and while these provide useful host formulations for
zero-yield-stress fluids, the algebra required to represent even
the simplest non-Newtonian flow problems is overwhelming
compared to the methods introduced later.  The mapping
method used in the present paper, it turns out, provides
superior modeling capabilities in that the complete momentum
equation for any rheology and annular geometry can be solved
exactly.  The new approach is less intensive numerically and
easily describes realistic cuttings beds, washouts and fracture
indentations.

Geometric difficulties, however, are much more than
what meets the eye.  When yield stress fluids flow, “plug
regimes” that move as solid bodies are always present in flow
domains below a given yield stress.  When slot flow or pie
slice models are used to simplify the solution process, “plug
rings” are always obtained by virtue of the adhoc recipes
described above.  This is physically incorrect in most
operational situations characterized by high eccentricity.  For
example, one would expect a large, isolated, almost circular
plug element at the wide side of (a) of Fig. 1 and perhaps in a
narrow strip at the bottom, but a flow containing such a solid
plug would be ruled out by both solution methods.  Until

recently, of course, exact solutions for (a) Fig. 1 with yield
stress fluids, e.g., Bingham plastics and Herschel-Bulkley
models, were impossible anyway for one important reason –
theoretically, the size and shape of the plug zone are unknown
in problems without azimuthal symmetry, and without
knowledge of these internal boundary properties, a complete
flow solution could not be obtained.  This paper addresses and
solves this problem in its complete generality.

Mathematical difficulties.  Ideally, one would represent
the details of highly eccentric annular domains exactly and in
their entirety using boundary-conforming, curvilinear meshes,
to which the governing equations of motion would be written,
solved, and post-processed for relevant engineering
information.  However, this is often numerically difficult
because there are as many distinct partial differential equation
formulations as there are fluid rheologies, e.g., the equations
for Newtonian, power law, Bingham plastic and Herschel-
Bulkley fluids are very different, each with its own
convergence, stability and physical properties.   Moreover,
because the equations are generally nonlinear, solutions must
be obtained by iterative means.  In fact, iterative solutions
solving complicated grid generation equations must be
followed by iterative solutions to produce the required
flowfields on the resulting meshes.  These difficulties are
compounded, typically, by user inexperience in computational
grid generation and numerical analysis.  Even when solutions
to underlying velocity fields are available, post-processed field
solutions for shear rate, viscous stress, apparent viscosity, and
so on, need to be automated and rapidly displayed in order to
be useful in real-time applications.  This requirement is
particularly relevant in ultra-deepwater applications since fast
and accurate pressure solutions are required to navigate the
narrow window between formation fracture and disastrous
blowout.  These problems are all addressed in the software
development program.

User interface considerations.  Assuming that both
geometric and mathematical issues can be addressed
satisfactorily, human factors issues relating to software usage
become all-important especially in anticipated applications to
managed pressure drilling in ultra-deepwater drilling and hole-
cleaning at high deviation angles.  Physical formulations must
be mathematically rigorous, numerical solutions must be
detailed and pertinent to the annular geometry at hand, and
complete field solutions for all engineering properties must be
achievable in a manner that is completely transparent to
typical engineering users with undergraduate degrees – and,
even better, to field technicians with minimal modeling
experience or mathematical training.  This requires fully
automatic grid generation, nonlinear equation setup and stable
matrix inversion.

The user interface must be designed with rigsite
workflows in mind.  Importantly, accuracy and speed, that is,
“desktop speed” from problem definition to automated color
displays, go hand-in-hand, because of demands imposed by
narrow margins between pore-pressure and fracture-pressure
gradient profiles in modern offshore applications.  All of the
above considerations, again, accurate geometric modeling,
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rigorous mathematical formulation and solution, and fast,
user-friendly, graphically-oriented software implementation,
render the general annular flow modeling problem extremely
challenging.  We now address each of the foregoing issues and
explain how the solutions satisfactorily address these needs.

Exact Geometric and Mathematical Formulation

Boundary-conforming, curvilinear meshes. Coordinate
systems “natural” to engineering problems play vital roles in
facilitating efficient and accurate computational solutions.  For
example, circular coordinates are natural to circular wells
producing from infinite reservoirs, while rectangular systems
are ideal for problems solving, say, temperature distributions
on rectangular plates.  By the same token, a mesh system
suitable for eccentric annular geometries would have inside
coordinate lines that coincide with circular or square drill
collars with stabilizers, while outside lines would conform to
irregular borehole walls with their cuttings beds, washouts and
fracture indentations.  A second set of coordinate lines might
be constructed orthogonally to the first, although this is not
necessary if all terms in the resulting transformed governing
equations are retained.  By contrast, it is clear that rectangular
(x,y) or circular (r,) coordinates are less than satisfactory for
accurate geometric description of general annuli.

In natural “boundary-conforming, curvilinear
coordinates,” here denoted by (,), boundary conditions
would be easily specified.  For example, the no-slip velocity
condition for stationary surfaces, say, at pipe and borehole
surfaces, is simply described by “u = 0” along horizontal grid
lines  = pipe and = borehole where the subscripted numbers
are constants.  By contrast, the formulation in rectangular
coordinates would require u = 0 applied along cumbersome
curves, e.g., u{x,f(x)} = 0 where y = f(x) represents internal
and external contours.

The objective behind grid generation is a set of
transformations (x,y) and (x,y) that enable simple boundary
condition implementation, so that a complicated physical
region, here the eccentric borehole annulus, becomes a simple
rectangular one in a computational domain, where the solution
of the mathematical problem is undertaken.  Once the
mapping transforms are available, the governing equation
itself must be expressed in the new coordinates.  For example,
the partial differential equation for steady-state, two-
dimensional, Newtonian fluid flow is the well known uxx + uyy

= - -1 P/z where  and P/z represent viscosity and
applied pressure gradient. Although this appears in rectangular
coordinates, the equation applies to all annular geometries.

The conversion process itself is straightforward.
Suppose we wish to express a function u(x,y) in terms of
convenient independent variables  and .  If the
transformations x = x(,) and y = y(,) are available, direct
substitution allows us to rewrite u(x,y) in the form u(x,y) =
U(,), where the functional relation U(,) between  and
is generally different from the relation u(x,y) connecting x
and y.  Derivatives of u(x,y) with respect to x and y are easily

related to derivatives of U(,) taken with respect to  and .
For example, it is easily shown that U = uxx + uy 

yand U =
uxx + uy 

y for the first derivatives, with obvious extensions
to second derivatives obtained using the chain rule of calculus.
In general fluid-dynamical problems, the resulting equation
for U(,) is typically more complicated than that for u(x,y).
The computational benefit, however, is accurate and noise-free
implementation of boundary conditions, not to mention the use
of much fewer grid points for the same level of physical
resolution.  Calculated solutions are displayed in physical
space with the assistance of custom color plotting routines.

Many commercial simulators calculate velocities and
other flow properties directly using rectangular (x,y) grids.
We emphasize that x-y coordinate lines do not conform to the
irregular curves defining near and farfield boundaries; also,
high grid densities imposed, say at the bottom of an eccentric
annulus, would require similarly high densities far away where
detailed resolution is unnecessary.  This results in large,
inefficient computing domains containing dead flow and
extremely large matrices.  In addition, “choppy” meshes lead
to noise, inaccuracy and instability.  Other simulators,
particularly general purpose codes used in computational fluid
dynamics (CFD), do support automatic and efficient “finite
element” or “finite volume” gridding.  However, they are not
portable in the sense that special licenses must be purchased
for users, thus incurring significant costs.  But more
importantly, they run proprietary, high-overhead “canned”
routines that cannot be adapted to new mathematical models
(such as the novel yield stress formulation introduced below)
and cannot be “tuned” to run optimally.  Also, they offer
inflexible output formats that are not easily integrated with
custom designed graphics and user interface software.  In this
paper, the objective is a fast, flexible and accurate solution
procedure that can be installed on all operating systems at
minimal cost.

We conceptually describe the grid generation process in
this paper.  Details are offered in Chin (1992, 2001, 2002).
We reiterate the basic ideas here because they are essential to
understanding the solution approach and its topological
advantages.  Rather than dealing directly with = (x,y) and
= (x,y), we equivalently consider the inverse functions x =
x(,) and y = y(,) satisfying nonlinear coupled partial
differential equations, which are derived in the form

(x
2 + y

2) x -2 (xx + yy) x  + (x
2 + y

2) x  = 0   (1)

(x
2 + y

2) y -2 (xx + yy) y  + (x
2 + y

2) y  = 0   (2)

where  and  are now independent (as opposed to dependent)
variables.  We aim to map the irregular flow domain of Fig. 2a
into the simple rectangular computational domain of Fig. 2b
where B1 and B2 are physically insignificant “branch cuts”
where single-valued solution constraints are enforced.
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Fig. 2a – Irregular physical domain with inefficient rectangular
meshes.
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Fig. 2b – Irregular domain mapped to rectangular computational
space.
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Fig. 2c – Physical domain in boundary-conforming coordinates.

How are the foregoing equations used to create
numerical mappings?  Suppose that contour CW in Fig. 2a is to
map into = 0 of Fig. 2b.  The user first discretizes CW in Fig.
2a by penciling along it a sequence of dots chosen to represent
the curve.  If these are selected in an orderly, say, clockwise
fashion, they define the direction in which  increases.  Along
= 0, values of x and y are known (e.g., from measurement
on graph paper) as functions of .  Similarly, x and y values
along Cr are known as functions of  on = 1 of Fig. 2b.
These provide the boundary conditions for Eqs. 1 and 2, which
are augmented by single-valuedness constraints at arbitrarily
chosen branch cuts B1 and B2.  It is clear that this process is
easily automated by computer.

Conventionally, in grid generation, Eqs. 1 and 2 are
discretized by finite differences and solved by point or line
relaxation, starting with guesses for the dependent variables x
and y.  The problem is linearized by approximating all
nonlinear coefficients using values from earlier iterations.
Typically, several updates to Eq. 1 are taken, followed by
updates to Eq. 2, with this cycling process, often unstable,
repeated continuously until convergence.  Variations of the

approach are known, with 100 100 mesh systems in the -
plane requiring minutes of computing time.  Once x = x(,)
and y = y(,) are solved and tabulated as functions of  and
, physical coordinates are generated.  First,  is fixed; for
each node  along this , computed values of (x,y) pairs are
successively plotted in the x-y plane to produce the required
closed contour.  This procedure is repeated for all values of ,
until the entire family of closed curves is obtained, with limit
values  = 0 and = 1 again describing Cw and Cr.
Orthogonals are constructed by repeating the procedure, with
and  roles reversed.

This process provides the curvilinear mapping only.  The
equation describing the physics (e.g., the Navier-Stokes
equation for Newtonian flow or the general rheological
equations for non-Newtonian fluids) must be transformed into
(,) coordinates and solved.  In general, the transformed
governing equation, which is algebraically more complicated,
must be solved, and this procedure introduces its own
complications and numerical challenges. The “simplification,”
however, lies not in the transformed equation, which now
contains mixed derivatives and variable coefficients, but in the
computational domain itself, because this domain takes on a
rectangular form amenable to simple, noise-free numerical
solution, requiring significantly fewer nodal points for high
resolution physical definition.

Again, existing solution methods solving x(,) and
y(,) stagger the solutions for Eqs. 1 and 2.  For example,
crude solutions are used to initialize the coefficients of Eq. 1,
and improvements to x(,) are obtained.  These are used to
evaluate the coefficients of Eq. 2, in order to obtain an
improved y(,); then, attention turns to Eq. 1 again, and so
on, until convergence is achieved.  Various over-relaxation
means are used to implement these iterations, e.g., point SOR,
line SLOR, line SOR with explicit damping, alternating-
direction-implicit, and multigrid, with varying degrees of
success.  (Note that “SOR” and “SLOR” denote the
“successive-over-relaxation” and “successive-line-over-
relaxation” methods used to solve partial differential equations
iteratively in the numerical analysis literature.)  Often these
schemes diverge computationally.  In any event, the
staggering used introduces different artificial time levels while
iterating.  Classic numerical analysis, however, suggests that
faster convergence and improved stability are possible by
reducing the number of time levels.

A new approach to rapidly solve the nonlinear coupled
grid generation equations was proposed earlier and is based on
a very simple idea.  This idea has since been validated in
numerous applications.  Consider first z + z = 0, for
which zi,j  (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 holds on
constant grid systems (this is easily derived using standard
finite difference formulas).  This well-known averaging law
motivates the recursion formula zi,j

n = (zi-1,j
n-1 + zi+1,j

n-1 +
zi,j-1

n-1 + zi,j+1
n-1)/4 often used to illustrate and develop

multilevel iterative solutions; an approximate, and even trivial
solution, can be used to initialize the calculations, and nonzero
solutions are always produced from nonzero boundary
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conditions.
But the well-known Gauss-Seidel method is fastest: as

soon as a new value of zi,j is calculated, its previous value is
discarded and overwritten by the new value.  This speed is
accompanied by low memory requirements, since there is no
need to store both n and n-1 level solutions: only a single
array, zi,j itself, is required in programming.  The approach to
Eqs. 1 and 2 was motivated by the following idea.  Rather than
solving for x(,) and y(,) in a staggered, leap-frog manner,
is it possible to simultaneously update x and y in a similar
once-only manner?  Are convergence rates significantly
increased?  What formalism permits us to solve in Gauss-
Seidel fashion?  What are the programming implications?

Complex variables are used often in harmonic analysis
problems; for example, the real and imaginary parts of an
analytical function f(z), where z = x + i y, provide solutions
satisfying Laplace’s equation.  Here we use complex analysis
differently.  We define a dependent variable z by z(,) =
x(,) + i y(,), and then add Eq. 1 plus i times Eq. 2, in
order to obtain the net result (x

2 + y
2) z - 2 (xx +

yy) z + (x
2 + y

2) z = 0.  Now, the complex
conjugate of z is z*(,) = x(,) - i y(,), from which we
find that x = (z + z*)/2 and y = - i (z - z*)/2.  Substitution
produces the simple and equivalent one-equation result

(z z*) z - (zz* + z*z ) z + (z z*) z  = 0  (3)

This form yields significant advantages.  First, when z is
declared as a complex variable in a Fortran program, Eq. 3
represents, for all practical purposes, a single equation in
z(,).  There is no need to leap-frog between x and y
solutions now, since a single formula analogous to the
classical model zi,j = (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 is
easily written for the zi,j using Eq. 3 as the host equation.
Because both x and y are simultaneously resident in computer
memory, the extra time level present in staggered schemes is
completely eliminated, as in the Gauss-Seidel method.  In
thousands of test simulations conducted using point and line
relaxation, convergence times are shorter by orders of
magnitude relative to those obtained for cyclic solution
between x(,) and y(,).  Convergence appears to be
unconditional, monotonic and stable.  Because Eq. 3 is
nonlinear, von Neumann tests for exponential stability and
traditional estimates for convergence rate do not apply, but the
evidence for stability and convergence, while empirical,
remains very strong and convincing since we have always
computed useful grids in all test runs.

Iterative solution of nonlinear partial differential
equations.  Earlier we noted that uxx + uyy = - -1 P/z applies
to steady, two-dimensional, single-phase Newtonian flows for
borehole annuli having the most complicated shapes;
unfortunately, practical solutions cannot be accurately
obtained in (x,y) coordinates.  Here,  is a constant viscosity
and P/z is the applied pressure gradient in the z direction
assumed to be known.  This is the so-called Poisson equation
in mathematics, and students who have undertaken its study
realize that, despite the apparent simplicity offered by few

terms and complete linearity, useful solutions to the classical
model are nonetheless difficult to obtain.  When the
underlying fluid is nonlinear, this equation is replaced by Eq.
4, which is vastly more complicated, that is,

 (N u/y)/y  +  (N u/x)/x  = P/z                         (4)

where N now represents the “apparent viscosity” function.
This apparent viscosity is not constant, but a function of local
shear rates whose mathematical form depends on the
particular rheology assumed.  For example, in the case of
power law fluids modeled by an exponent “n” and a
consistency factor “K,” N takes the form N = K [ (u/y)2 +
(u/x)2 ](n-1)/2.  Even without solving the problem, it is
clear that, since u/x and u/y depend on the (unknown)
solution itself, any resulting apparent viscosity must vary
locally within the flow domain and depend on both geometric
details and flow rate.  Detailed computed solutions for annular
flows are presented in Chin (1992, 2001) where approximate
approaches to plug flow modeling are used.

Because Eq. 4 is now strongly nonlinear, the solution
process at its very heart must remain nonlinear.  This implies
that one cannot use simpler Newtonian solutions as leading
approximations and focus on higher order improvements to
them.  The basic solution method must retain a fully nonlinear
character in order that well known nonlinear relationships
between pressure gradient and volume flow rate evolve as part
of an iterative computational process.  As if this alone were
not complicated enough, we emphasize that it is the re-
expression of Eq. 4 in general (,) curvilinear coordinates,
not in simple (x,y) coordinates, that must be solved, and that
these coordinates and their metrics are only available
numerically.

The transformed equation now contains additional terms
as well as nonlinear coefficients that depend on the mapping.
Direct solutions are not numerically possible, but exact
solutions can be obtained iteratively.  In fact, finite difference
methods are used; the solutions are obtained line-by-line using
so-called “successive line over relaxation” (SLOR) schemes
written in the curvilinear coordinates.  These iterative
solutions are initialized by “close” analytical or numerical
solutions; the closer the initial guess, the more rapid the
convergence.  For typical problems, the efficient schemes
devised will produce a usable curvilinear grid in
approximately one second of computing time, while the
solution of the transformed momentum equation (when
pressure gradient is specified) may require two-to-three
seconds.  Again, detailed discussions and computed solutions
for power law and simple plug flows in highly eccentric
annuli, with practical applications, are given in Chin (1992,
2001).  The approximate plug flow methods developed in
these early researches are now obsolete and are replaced by
the following exact approach for yield stress description and
modeling.

Yield stress, plug zone size and shape modeling.  In
fluid flows where yield stresses exist, “plug zones” are to be
found.  These plugs move as solid bodies within the flowing
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system.  For pipes with circular cross-sections and for
concentric annuli, it is possible to derive exact analytical
solutions for plug zone size and shape for Bingham plastics
(general solutions have, in fact, been derived for both
geometries assuming Herschel-Bulkley fluids, and will be
presented separately).  For circular pipes, the cross-sectional
plug is simply a circle; for concentric annuli, of course, the
plug is a concentric ring.

The appearance of solid plugs within moving streams
results from the rheological model used by mathematicians to
idealize the physics.  If we denote the shear rate functional by
 = [ (u/y)2 + (u/x)2 ]1/2, this idealization can be written
formally as

N  = k n-1 + Syield/ if {1/2 trace (SS)}1/2  > 0

D = 0 if {1/2 trace (SS)}1/2  < 0                                 (5)

where the general extra stress tensor is denoted by  S and the
deformation tensor is given by D.  Here, 0 is the so-called
“yield stress.”  The discontinuous “if, then” character behind
Eq. 5 is responsible for the sudden transition from shear flow
to plug flow commonly quoted.  As noted, for flows with
azimuthal symmetry, that is, circular pipes and concentric
annuli, exact, rigorous mathematical solutions are in fact
possible.

For non-circular ducts and eccentric annuli, which
describe a large number of practical engineering problems, it
has not been possible to characterize plug zone size and shape,
even approximately.  Thus, the most significant petroleum
engineering flow problems important to both drilling and
cementing cannot be modeled at all, let alone accurately.  In
order to remedy this situation, we observe that the
discontinuity offered in Eq. 5 is really an artificial one,
introduced for, of all reasons, “simplicity.”  This unfortunately
leads to the solution difficulties noted.  In reality, practical
engineering flows do not suddenly turn from shear to plug
flow; the transition may be rapid, but it will occur
continuously over finite measurable distances.  We therefore
turn to more realistic rheological models which apply
continuously throughout the entire problem domain, and
which, if the underlying flow parameters permit, lead to plug
zones naturally during the solution process.

The conventional Herschel-Bulkley viscoplastic model,
which includes Bingham plastics as a special limit when the
exponent “n” is unity, requires that  = 0 + K(d/dt) n, if  > 0

and d/dt = 0 otherwise.  Here  is the shear stress, 0 is the
yield stress, K is the consistency factor, n is the exponent, and
d/dt is the shear rate.  As explained, this model is far from
perfect.  For example, both Herschel-Bulkley and Bingham
plastic models predict infinite viscosities in the limit of
vanishing shear rate, a fact that often leads to numerical
instabilities.  In addition, the behavior is not compatible with
conservation laws that govern many complex flows.

Fig. 3 – Extended Herschel-Bulkley law.

An alternative to the standard Herschel-Bulkley model is
the use of continuous functions which apply to sheared
regimes, and in addition, through and into the plug zone.  One
such example model is suggested by Souza, Mendez and
Dutra (2004), that is,  = {1 – exp(-0 d/dt /0)}{0 + K
(d/dt) n}, which would apply everywhere in the problem
domain.  The corresponding apparent viscosity N, for
numerical implementation in Eq. 4, is denoted by

 = /(d/dt)
   = {1 – exp(-0 d/dt /0)}{0/(d/dt) + K (d/dt) n-1}        (6)

The “apparent viscosity vs shear stress” and “shear stress vs
shear rate” diagrams, from Souza et al, are duplicated in Fig.
3.  What are the physical consequences of this model?  Eq. 6,
in fact, represents an “extended Herschel-Bulkley” model in
the following sense.  For infinite shear rates, one would
recover  = 0 + K (d/dt) n.  But for low shear rates, a simple
Taylor expansion leads to  {0(d/dt) /0}{0/(d/dt) + K
(d/dt) n-1}  0 where it is clear now that 0 represents a very
high viscosity for the plug zone.  The use of Eq. 6 in
numerical algorithms simplifies both formulation and coding
since internal boundaries and plug domains do not need to be
determined as part of the solution.  A single constitutive law
(as opposed to the use of two relationships in Eq. 5) applies
everywhere, thus simplifying computational logic; moreover,
the continuous function assumed also possesses continuous
derivatives everywhere and allows the use of standard
difference formulas.  Cumbersome numerical matching across
internal boundaries is completely avoided.  In a practical
computer program, the plug zone viscosity might be assumed,
for example, as 1,000 cp.  In fact, we choose high values of 0

which would additionally stabilize the numerical integration
schemes used.  This strategy is applied throughout this work,
both to the iterative relaxation schemes for steady-state
problems and to the transient integration schemes for more
complicated formulations.  This new approach was first
discussed in Chin and Zhuang (2010) for steady flows and has
since been incorporated in the fully transient annular flow
modeling approaches.

Borehole axis radius of curvature.  Borehole axis
curvature is important to ultra-deepwater drilling, especially in
short and medium radius turning applications.  Several aspects
of cuttings transport and debris removal are not completely
understood insofar as centrifugal effects are concerned and a
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study of curvature effects contributes to an understanding of
their influence on stress fields.  Also, bends in pipelines and
annuli are interesting because they are associated with losses;
that is, to maintain a prescribed volume flow rate, a greater
pressure drop is required in pipes with bends than those
without.  This is true because the viscous stresses acting along
pipe walls are higher.  The modeling of borehole axis
curvature effects for problems involving noncircular ducts and
highly eccentric annuli containing non-Newtonian fluids was
first addressed in Chin (2001), where detailed derivations,
equations and computed examples are given.  Essentially, it is
shown how, by replacing “1/  P/z” with an inertially
corrected “1/  P/z - 1/R u/r + u/R

2” where R is the
radius of curvature, the effective pressure gradient accounting
for centrifugal effects is properly and stably modeled.  This
model is incorporated into Eq. 4 and a radius of curvature
entry appears in the software menu in Fig. 4a at the bottom
left.

Steady and Transient Formulations:
User Interface and Physical Modeling Capabilities

Simulators for two-dimensional steady and transient flow
are described in this paper, applicable to single-phase,
Herschel-Bulkley fluids, which may also be operated in
Newtonian, power law and Bingham plastic modes.  For
Bingham plastic and Herschel-Bulkley fluids, the generalized
rheological approach is used and plug zone sizes and shapes
are determined automatically whatever the eccentric annular
geometry.  The intuitive user interface shown in Fig. 4a
requires only an elementary understanding of engineering
vocabulary and the simulator may be operated with minimal
training.  Annular geometry is defined by entering center
coordinates and radii in the upper left menu.  Clicking ‘Show
Annulus’ provides an instantaneous display of the geometry
assumed, plus a typical curvilinear grid, e.g., as illustrated in
Fig. 4b, whose mesh density may be coarsened or refined at
run-time.  In addition, online editing utilities allow the
baseline eccentric circles to be edited for washout, cuttings
bed or fracture modification effects.

Fig. 4a – Steady flow user interface.

Fig. 4b – Quick annular geometry and curvilinear grid display
mode.

Rheological parameters for the general Herschel-Bulkley
fluid are entered into the input boxes at the upper right of Fig.
4a.  Four model are possible by choosing the values of n, K
and 0 appropriately.  Newtonian fluids require n = 1 and 0 =
0, while power law fluids allow general n with vanishing 0.
On the other hand, Bingham plastics require n = 1 and non-
vanishing 0, while all three parameters may be generally
assumed in the case of Herschel-Bulkley fluids.  Fig. 4c also
shows two utilities for n and K determination in the case of
power law fluids, that is, assuming Fann dial readings or
viscosity and shear rate data are available.

Fig. 4c – Determining n and K for power law fluids.

It is clear from Figs. 4a – 4c that several important
auxiliary capabilities have been built into the overall
algorithm.  First, the axis of the borehole need not be straight;
it may be curved, with any constant value for radius of
curvature, to model short, medium and large radius turning of
the borehole in offshore applications.  This properly accounts
for centrifugal effects which will affect the relationship
between pressure gradient and volume flow rate.
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Second, the drillpipe may move in either direction
relative to the borehole, that is, constant speed translational
motion is permitted.  In the simplest application, the drillstring
penetrates the formation, moves relative to the borehole  at
constant positive or negative speed, and induces a purely two-
dimensional flow everywhere; the value of this speed is
entered into the bottom left input box of Fig. 4a.  This
capability also supports steady-state swab-surge analysis, with
the mudpumps turned off or on and continuously running, as
will be illustrated in examples later.  A simple ‘Worksheet’ is
loaded by clicking ‘Swab-surge (steady)’ in Fig. 4c, which
prompts the user for tripping mode and speed.  The positive or
negative induced volume flow rate is calculated and added to
the flow rate specified at the mud pump.  Two calculation
modes described in the next paragraph was developed for
swab-surge and other drilling and cementing applications.

The option boxes immediately above the ‘Control Panel’
in Fig. 4a show how two computational modes are supported.
In the first, the applied axial pressure gradient is specified and
volume flow rate (together with detailed field solutions for all
physical properties) is calculated.  In the second, volume flow
rate is specified and pressure gradient (together with all field
properties again) is determined iteratively.  The algorithm
involves some subtlety because, as will be described in the
application for swab-surge, the directions for drillpipe motion
and net volume flow rate need not be correlated.  For the
“flow rate specified” mode, an initial pressure gradient is
assumed for which a test rate is calculated and compared
against the target rate; if the results do not satisfy a tolerance
of 1%, a half-step correction procedure is applied to the test
gradient and the calculations are repeated to convergence.
Typically, the “pressure gradient specified” mode requires 2-3
seconds or less for a complete solution, while the “flow rate
specified” mode may require up to ten seconds.

Fig. 4d – Transient flow user interface.

The foregoing remarks, focusing on the screen shot in
Fig. 4a, apply to the steady flow simulator.  The corresponding
user interface for transient incompressible flow is shown in
Fig. 4d.  Now, instead of Eq. 4, fully unsteady effects are
computed from its transient extension, but rewritten in custom
curvilinear coordinates applicable to the particular geometry
under consideration.  The above menu contains similar
geometry and rheology definition modules, however, general,
coupled, transient functions for pipe or casing axial
reciprocation, inner circle rotation and pressure gradient are
permitted.  Additional input boxes for time step selection to
facilitate numerical time integration are shown.  Importantly, a
database of prior runs is offered for user convenience and
education.  Clicking on a named entry at the top right of Fig.
4d automatically fills in all relevant input boxes and launches
any sub-applications programs that are required.  Users may
edit numerical values and re-run any simulations available in
the database.  Also, all graphical capabilities described in this
paper for steady flow are also available for unsteady flows.

Color displays of engineering properties.  In order to
make the mathematical models useful, every effort was
expended to automate the display of important field quantities
using two and three-dimensional color graphics.  Use of the
presentation tools is completely transparent to the engineer.
On convergence of the solution, a message box (supplemented
with speech output and suggestions) summarizes basic
pressure gradient and flow rate relationships.

The menu in Fig. 5a indicates that text output and color
displays for different physical quantities are available for
display.  These quantities are post-processed from the velocity
solution and made available for important engineering
reasons.  For example, Chin (1992, 2001) shows that apparent
viscosity is vital to evaluating spotting fluid effectiveness in
freeing stuck pipe.  On the other hand, viscous stress (at the
cuttings bed) is important to studying hole cleaning in
horizontal and deviated wells, while velocity and viscosity
play dominant roles in vertical well cuttings transport.

Fig. 5a – Graphical solution display options.

Fig. 5b displays results for axial velocity, apparent
viscosity, shear rate, viscous stress, dissipation function and
Stokes product in simple “planar plots.”  For the all-important
velocity results, additional displays using three-dimensional
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color capabilities are offered as indicated in Fig. 5c.  These
capabilities, which include contour plots and mouse-rotatable
perspective displays, are available for all mesh combinations,
ranging from coarse to fine, selected by the user at run-time.
These tools, plus text output, are useful in supporting detailed
report generation.

Fig. 5b – Planar color displays of key physical field quantities.

Fig. 5c – Three-dimensional, color displays (contour maps and
mouse-rotatable perspective views).

Modeling borehole geometric irregularities.  For
convenience, the main input screen in Fig. 4a accepts off-
centered circles only.  When center coordinates and radii are
entered for inner and outer circles, an information box
displays the calculated value for dimensionless eccentricity, to
provide a useful reference point for drilling applications.
Built-in error checking prevents circle cross-overs.  At run-
time, both inner and outer circle coordinates may be changed
at the user’s option.  As shown in Fig. 6a below, existing
contour coordinates are displayed, which may be modified
without restriction.  The changes elected for the example
shown invoke changes to seven points only, in order to
describe a simple washout; this convenient online editing tool
can be used to draw washouts, cuttings beds and fracture
indentations of any shape.  While Fig. 6a provides a simple
“planar plot” of velocity, Fig. 6b provides more detailed three-
dimensional resolution.  Interestingly, for the simulation
shown, the presence of the washout allows a 30% increase in
flow rate for the same pressure gradient.  General conclusions
are not possible, and appropriate results must be made on a
case-by-case basis.

Fig. 6a – Modifying eccentric circle at run-time for washouts.
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Fig. 6b – Color display of velocity field with washout.

Yield stress modeling.  As noted earlier, yield stress
modeling in eccentric annuli is important to both drilling and
cementing applications.  The use of the generalized Herschel-
Bulkley constitutive model correctly predicts plug zone size
and shape for all geometries.  Because a continuous flow
model is used, which guides the evolution of a single
continuous velocity field, the computational difficulties
associated with distinct internal boundaries and infinite
viscosities are avoided.  The method, we emphasize, will
predict realistic plug zones with rapid gradients when they
exist, as shown in Fig. 7a.

More interesting results are shown in Fig. 7b, in which
plug zones for (1) a stationary pipe, (2) a pipe moving
opposite to the direction of net flow, and (3) a pipe moving in
the same direction of the main flow, are shown.  Such
computations are important in swab-surge applications and
accurate pressure modeling.  Plug zones associated with yield
stress, of course, are important to understanding cuttings
transport in drilling and fluid mixing in cementing.  Again, no
special procedures are required on the part of the user, as all
dynamical features are computed automatically for both yield
stress and non-yield fluids.  Computation of plug zone flows
requires no additional effort in terms of processing time and
memory resources.

Fig. 7a – Typical velocity results for eccentric annulus
with plug flow.

Fig. 7b – Non-Newtonian plug flow velocity profiles with
stationary pipe (left), pipe moving opposite to flow (middle), and

pipe moving with flow (right).

Overview – Detailed Eccentric Flow Results

The user interfaces in Fig. 4a and Fig. 4d, respectively,
represent the “flagship simulators” for steady and transient
flow modeling, both of which are directed at highly eccentric
annular geometries containing yield stress fluids.  We will
give detailed calculated results in this section to demonstrate
the new computational capabilities.  However, we emphasize
that a number of powerful “supporting simulators,” also state-
of-the-art, but hidden so far within the “Utilities” menus, are
available for problems with more geometric restrictions.

Each detailed calculated example below is prefaced by
introductory remarks indicating why the particular example is
important.  In the earlier discussion, we indicated that only
seconds are required to compute and display results for
general non-Newtonian flow in highly eccentric annuli.  This
assumes eccentric geometries constructed from off-centered
circles, which are set up automatically by the software.  If the
hole contour is to be edited, e.g., to model washouts or
cuttings beds, additional “desk time” requiring approximately
five minutes is required.  Then, as illustrated in Figs. 5a,b,c,
all the details of the flowfield are known and automatically
displayed in a simple manner to the user.

Chin (1992, 2001) importantly explains why different
physical quantities are in practice important, supporting basic
arguments with field and laboratory data.  For instance, axial
velocity and apparent viscosity are important parameters in
vertical well cuttings transport; the argument follows the usual
one explaining how hydrodynamic forces act on single
particles immersed in flowing media.  On the other hand, hole
cleaning in horizontal and deviated wells depends on viscous
stress at the top of cuttings beds, since viscous stresses
effectively erode beds by mechanical action; this was
illustrated using detailed data from University of Tulsa
experiments.  Apparent viscosity, for example, provides a
good indicator for spotting fluid efficiency in freeing stuck
pipe.  The same reason for applying low viscosity oil to a nail
stuck in wood (to remove it) holds here, and this simple
explanation was also supported by Gulf of Mexico data.

Preface to Example 4-8.  Prior to 2010, the calculation
of steady eccentric annular flow when the inner pipe rotates
with constant rpm proved to be a numerically unstable
process.  The instability was controlled by a parameter
proportional to the product of fluid density and rotation rate
and inversely proportional to apparent viscosity – calculations
simply “crashed” and different explicit and implicit schemes
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have been studied without success to remedy this problem.
Unfortunately, the values yielding unconvergent results
coincided with those parameters used in conventional drilling
and cementing.  Only two papers reported some optimism, but
details related to formulation and computing times were not
given.  In this research, we encountered the same obstacles
with purely steady formulations.  On the other hand, it turned
out that steady flows with rotation can be computed by
performing transient calculations and allowing the time
integrations to reach steady asymptotic values.  Computing
times, typically, are not long, with 1-3 minutes being average.
Higher rotation rates and heavier fluids require shorter time
steps, and computing times may reach five minutes.  Short
computing times are important so that the software model is
useful in actual practice.  Example 4-8 below provides a series
of runs obtained using the simulator of Fig. 4d.  These
applications include axial movement, pipe movement and
yield stress.

Example 4-8.  Steady-state swab-surge in eccentric
annuli for Herschel-Bulkley fluids with drillpipe
rotation and axial movement.

In Example 4-7, we addressed pressure gradient
computations for general flow rates and rotation speeds for
power law fluids in a concentric annulus under steady
conditions without axial pipe movement.  For such flows, the
convective terms in the momentum equations vanish
identically.  The effect of rotation is restricted to shear-
thinning so that, for a given pressure gradient, increases in
rotation rate will reduce apparent viscosity and increase
volumetric flow.  These effects are well known in the older
literature and apply mainly to vertical wells.

Run A.  In deviated and horizontal wells, annular
eccentricity is the rule, and while shear-thinning remains
important, a nonlinear convective term (whose magnitude is
proportional to fluid density and pipe rotation speed and
inversely proportional to apparent viscosity, and which is
variable throughout the annular cross-section) appears and
modifies the local axial pressure gradient.  For most practical
geometries, this will reduce the flow relative to that found for
the eccentric non-rotating problem for the same applied
pressure gradient.  Equivalently, for the same flow rate, the
pressure drop increases significantly.  These properties are
important in managed pressure drilling.

Fig. 4-8a-1 – Transient 2D flow menu (no rotation).

The direct computation of steady rotating flow in an
eccentric annulus is often an unstable numerical process if
calculated from a purely steady formulation.  Solutions have
been published by various authors who have all given few
computational details related to convergence properties and
computing times.  Such schemes tend to destabilize at higher
specific gravities and rotation speeds, and unfortunately, in the
ranges typical of most drilling applications.  Fortunately,
steady rotating flow solutions can be stably computed by
solving the transient formulation asymptotically for large
times.  In Fig. 4-8a-1, we have set up flow simulations for a
power law fluid in an eccentric annulus with axial pipe
movement but no rotation.  The problem is integrated in time
starting with quiescent conditions.  Fig. 4-8a-2 shows
computed volume flow rates reaching constant levels at 941.0
gpm after about one minute of computing time (this is
interestingly, but fortuitously, also the physical time scale)
with convergence to steady-state achieved very stably.  The
maximum axial flow speed is found, as expected, at the wide
side of the annulus.

Fig. 4-8a-2 – Eccentric power law results without pipe rotation.
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Run B.  Repeating the foregoing simulation to allow
drillstring rotation is straightforward.  For example, we simply
change the “0” in the RPM box to “100” (as seen from Fig. 4-
8b-1) and completely automated calculations lead to a reduced
flow rate of 562.2 gpm as shown in Fig. 4-8b-2.  As is well
known, the location of maximum axial velocity moves
azimuthally, and the results are consistent with this
observation, a fact that may be useful in cuttings transport and
hole cleaning applications.  Computed results also indicate
that the time to reach equilibrium decreases with rotation.  The
results presented here, for pipe moving both axially and
azimuthally, show that pressure gradient calculations are
doable and straightforwardly performed for general power law
fluids in highly eccentric annuli.

Fig. 4-8b-1 – Modified flow with 100 rpm drillstring rotation.

Fig. 4-8b-2 – Reduced flow rate achieved in shorter time.

Run C.  In the next calculation, we repeat that in Fig. 4-
8b-1, which included axial pipe movement and nonzero
rotation speed in addition to borehole eccentricity and non-
Newtonian power law flow, but now consider the additive
effects of Herschel-Bulkley yield stress.  In Fig. 4-8c-1, we

modify the previous “0” to “0.002 psi” and leave all other
parameters unchanged.  As before, the calculations require
about 30 seconds and are performed stably.

Fig. 4-8c-1 – Flow at 100 rpm now with 0.002 psi yield stress.

Fig. 4-8c-2 shows that the volume flow rate is reduced
from 562.2 gpm to 516.9 gpm, for a 9% reduction.  One might
have asked what the required pressure gradient would be for
the yield stress fluid if we needed to maintain a 562 gpm flow
rate.  For the steady flow solver, direct “pressure gradient
specified” and inverse “flow rate specified” calculation modes
were available.  For mathematical reasons, this is not practical
for transient simulations.  A simple procedure requires us to
manually attempt reasonable pressure gradient guesses.  This
procedure can be very efficient.  For this example, we
determined that – 0.011 psi/ft would yield 562 gpm after three
tries or about two minutes of desk time.  In other words, the
presence of yield stress steepened the pressure gradient by a
substantial 10%.

Fig. 4-8c-2 – Flow at 100 rpm now with 0.002 psi yield stress.
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Fig. 4-8d-1 – Flow at 200 rpm with 0.002 psi yield stress.

Run D.  Next, we will re-consider the yield stress
problem in Fig. 4-8c-1 and determine the consequences of
increasing rotation rate from 100 to 200 rpm.  The input
screen is shown in Fig. 4-8d-1.  The effect of doubling rotation
speed is a decreased flow rate for the same – 0.01 psi/ft, in this
case a much smaller 443.3 gpm, as shown in Fig. 4-8d-2.  This
effect arises from eccentricity.  And what if we had insisted on
562 gpm?  Then, some simple manual “cut and try”
calculations with different pressure gradient guesses lead to a
substantially steepened – 0.0131 psi/ft, a value that was
obtained within two minutes with four different guesses.

Favorable effect of rotation on hole cleaning. The
detailed effects of rotation and yield stress have been
discussed in the context of eccentric borehole annuli with
coupled axial drillstring movement.  These calculations
represent completely new industry capabilities.  It is
interesting to note that, from Fig. 4-8a-2 for non-rotating flow,
the location of maximum axial flow speed lies symmetrically
at the top at the wide side of the eccentric annulus.  When
rotation exists, as shown in Figures 4-8b-2, 4-8c-2 and 4-8d-2,
the location of the maximum moves azimuthally as shown,
consistently with other known investigations (note that “red”
in these three diagrams denote different speeds).  That
increased relative speeds are achieved at the bottom of the
annulus is consistent with the improved hole cleaning ability
of drillstrings under rotation observed under many field
conditions.  Of course, this improvement comes at the expense
of steepened pressure gradients, a crucial trade-off whose
value must be assessed by the drilling engineer.  The end
decision made at the rigsite will depend on “the numbers”
which can only be obtained computationally.

Fig. 4-8d-2 – Flow at 200 rpm with 0.002 psi yield stress.

Run E.   Here we study the effect of slow-down in
drillstring rotation rate (the menus support more complicated
motions, e.g., stick-slip torsional oscillations).  Acceleration
and deceleration are always encountered in start-up and slow-
down.  We repeat the calculation of Fig. 4-8d-1, starting with
200 rpm for the nonzero yield stress fluid.  But as shown in
Fig. 4-8e-1, we allow the 200 rpm to slow down to 0, as seen
from the “- 0.5” deceleration rate selected under the RPM
menu.  Clicking on “?” to the right produces a plot of the
assumed RPM vs time curve in Fig. 4-8e-2 (note that
numerous time functions for axial pipe speed, rotation rate and
pressure gradient are permissible with the simulator).  The
calculated flow rate vs time response is shown in Fig. 4-8e-3.
This flow rate increases as expected, with drillstring rotation
rate decreasing.   In this transient simulation, the location of
maximum axial velocity is not stationary, but instead
propagates azimuthally about the eccentric annulus.  A
“snapshot” at one instant in time is shown in Fig. 4-8e-4.
Although this example is purely transient, we have included it
in the steady eccentric annular flow example to highlight the
importance (or perhaps, unpredictability) of transient effects.
The shape of the transient rate curve in Fig. 4-8e-3, we
emphasize, is obtained for a simple Herschel-Bulkley fluid
and not one with “memory” effects.
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Fig. 4-8e-1 – Decreasing rotation rate, from 200 to 0 rpm.

Fig. 4-8e-2 – Linearly decreasing rpm, from 200 to 0.

Fig. 4-8e-3 – Transient increasing flow rate with decreasing rpm.

Fig. 4-8e-4 – Transient movement of maximum point
as rpm decreases.

Run F.  In this final example, we consider a complete
steady swab-surge application with high annular eccentricity,
a nonlinear yield stress fluid, and allow the drillpipe to move
axially while simultaneously rotating.  This demonstrates the
capabilities in the math models and provides a complete
summary of the software menu sequences needed to perform
similar calculations.  In order to proceed, the “Swab-Surge
Worksheet” must be invoked from the main “MPD Flow
Simulator (Steady 2D)” in Fig. 4-8f-1.   In the Worksheet, we
consider a five-inch radius hole and a pipe trip-out speed of
5,000 ft/hr.  During this operation, we wish to pump
continuously, with the surface mudpump rate set at 856.9
gpm.  Now, as the drillpipe is withdrawn from the hole, fluid
must rush in to fill the bottomhole void.  The Worksheet
indicates that the effective annular flow rate is 516.9 gpm and
that the pipe speed in “inch/sec” units is 16.67 in/sec.

Fig. 4-8f-1 – Running the “Swab-Surge Worksheet”
(areas that do not affect Worksheet calculator are shown shaded).

Now, we wish to focus the study on the non-Newtonian
flow of a Herschel-Bulkley fluid with n = 0.415, K =
0.0000944 lbf secn/in2 and 0 = 0.002 psi, in an annulus
formed by a 4 in diameter pipe in a 10 inch diameter hole,
with an eccentricity of 0.3333. We will demonstrate the
solution process for flows without and with rotation.  If we
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wish to consider axial movement only but without rotation, we
can run the steady flow calculation shown in Fig. 4-8f-2 in
“volume flow rate specified” mode.  Clicking on “QuikSim”
produces the screen output iteration history shown on the
following page.

 SIMULATION STARTS ...
 Herschel-Bulkley model, with exponent "n" equal
 to 0.4150E+00 and consistency factor of 0.9440E-04
 lbf sec^n/sq in.
 A yield stress of 0.2000E-02 psi is taken.
 Borehole axis radius of curvature is 0.1000E+04 ft.
 Axial speed of inner pipe is 0.1667E+02 in/sec.
 Target flow rate of 0.5169E+03 gal/min specified.
 Iterating on pressure gradient to match flow rate ...

 Iteration  100, Error = .00672962
 Iteration  200, Error = .00248959
 Iteration  300, Error = .00119476
 Iteration  400, Error = .00052236
 Iteration  500, Error = .00019270
 Iteration  600, Error = .00005923
 Iteration  700, Error = .00001814
 Iteration  800, Error = .00000521
 Iteration  900, Error = .00000171
 Iteration 1000, Error = .00000047

 O  Axial pressure gradient of -.1000E+00 psi/ft
    yields volume flow rate of 0.4076E+06 gal/min.

 Flow rate target error is 0.7876E+05 %

 Iteration  100, Error = .00371665
 Iteration  200, Error = .00067117
 Iteration  300, Error = .00014123
 Iteration  400, Error = .00002945
 Iteration  500, Error = .00000702
 Iteration  600, Error = .00000192
 Iteration  700, Error = .00000038
 Iteration  800, Error = .00000010
 Iteration  900, Error = .00000010
 Iteration 1000, Error = .00000010

 O  Axial pressure gradient of -.5000E-01 psi/ft
    yields volume flow rate of 0.4141E+05 gal/min.

 Flow rate target error is 0.7911E+04 %
.
.
.
.

 O  Axial pressure gradient of -.6250E-02 psi/ft
    yields volume flow rate of 0.6708E+03 gal/min.

 Flow rate target error is 0.2977E+02 %

 Iteration  100, Error = .00000000
 Iteration  200, Error = .00000011
 Iteration  300, Error = .00000000
 Iteration  400, Error = .00000011
 Iteration  500, Error = .00000011
 Iteration  600, Error = .00000011
 Iteration  700, Error = .00000000
 Iteration  800, Error = .00000021
 Iteration  900, Error = .00000011
 Iteration 1000, Error = .00000000

 O  Axial pressure gradient of -.4688E-02 psi/ft
    yields volume flow rate of 0.5217E+03 gal/min.

 Pressure gradient found iteratively, -.4688E-02
psi/ft,

 to yield 0.5217E+03 gal/min vs target 0.5169E+03
gal/min.

 Note:  Iterations terminate within 1% of target rate.
 Refine result by manually changing pressure gradient.

Fig. 4-8f-2 – Steady 2D solver.

Fig. 4-8f-3 – Computed axial velocity (non-rotating).

In other words, the pressure gradient associated with the
non-rotating flow is – .004688 psi/ft.  The corresponding axial
velocity field is shown in Fig. 4-8f-3 in a variety of available
plots.  Note that for non-rotating flows, the “Steady 2D”
solver automatically computes the required pressure gradient
using an internal inverse procedure.  It has not been possible
to develop a steady solver that allows rotation which is also
unconditionally numerically stable.  This does not, fortunately,
mean that steady rotating flows cannot be computed.
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Fig. 4-8f-4 – Transient 2D solver.

We demonstrate how by considering the effect of a
moderate 100 rpm rotation rate.   We use the “Transient 2D”
solver in Fig. 4-8f-4, with input boxes completed for the same
simulation parameters.  The strategy is to solve a fully
transient problem until steady-state behavior is obtained.
Because a “flow rate specified” mode is not available for
transient calculations, one resorts to repeated guesses for
pressure gradient, but we have found that three or four will
usually lead to a flow rate within 1-2% of the target value.
Since each trial calculation equilibrates quite rapidly, as
shown in Fig. 4-8f-5, the total “desk time” required is often
two minutes or less.

For this rotating flow run, a pressure gradient of – 0.01
psi/ft is required, as compared to the – .004688 psi/ft obtained
in the non-rotating case.  In other words, pressure gradients
are twice as severe because of rotation.  The “Results” menu
in Fig. 4-8f-4 provides numerous post-processed results in
addition to those of Fig. 4-8f-5.  For example, axial and
azimuthal velocity distributions are available, as given in Fig.
4-8f-6, as are detailed color plots of different physical
properties like apparent viscosity, shear rate and viscous
stress.

Fig. 4-8f-5 – Flow rate history and velocity distribution
(note, maximum axial velocities appear at annular bottom).

Fig. 4-8f-6 – Axial and azimuthal velocities at
cross-section “m = 19.”

Preface to rotating flow examples.   The modeling of
rotating flow effects using a transient approach involved much
more than simply adding a “ u/t” to Eq. 4 (for steady flow)
and integrating the unsteady equation in time.  Numerous
questions have arisen in the petroleum engineering literature
about the effects of rotation on pressure drop or flow rate, and
it was not clear if any of the inconsistencies and controversies
could even be explained by a simple mathematical model.
Moreover, numerical solutions introduce their own artifacts.
For instance, the way a function is approximated over several
grid points affects the way in which it contributes “artificial
viscosity” to the scheme.  This interacts with the rheological
model used, and needless to say, numerous issues arise.

The basic problem in rotating flow applications is
summarized.  In pre-1990s literature, exact non-Newtonian
flow solutions and field experiences consistently demonstrated
that drillstring rotation increases flowrate for a fixed pressure
gradient, or equivalently, decreases pressure gradient
(magnitude) for a fixed flowrate, the effect being attributed to
apparent viscosity reduction due to shear-thinning.  Field
experiences in the past two decades, however, indicate the
exact opposite, and recent papers have failed to determine the
causes of the apparent contradictions and resulting confusion.
It turns out that there are no inconsistencies:  the boreholes
considered recently are highly eccentric because they are
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deviated or horizontal, for which new convective terms in the
governing momentum equations appear which are due to
annular eccentricity and which modify the effective pressure
gradient (these terms are not present in older studies, which
consider only concentric annuli).  Exact numerical solutions
demonstrate the role of eccentricity in changing flowrate or
pressure gradient during drilling.  Because the changes are not
small, drillstring rotation can be used to control pressure in
managed pressure drilling applications and in cementing.  The
implications are more efficient drilling and improved safety.
The computational model developed uses boundary-
conforming, curvilinear mesh systems to describe annular
geometry exactly, and rapidly converging, stable, transient
algorithms have been developed to solve the general rheology
equations with and without yield stresses.  It can be shown
from theoretical arguments that –

 In Newtonian flow, the viscosity is a constant of the
motion (barring changes due to pressure and temperature)
which is unambiguously determined from viscometer
measurement.

 In non-rotating Newtonian flow, the lumped quantity
(1/) p/z controls the dynamics, and changes to it will
proportionally change u(y,z) everywhere – thus, faster
testing with inexpensive fluids, together with simple
arithmetic extrapolation, can be used in engineering
design.

 For concentric annuli in steady Newtonian rotating flow,
azimuthal velocities do not depend on pressure gradient,
and axial flows are unaffected by rotation: the two are
dynamically uncoupled.

 Annular eccentricity introduces changes to the applied
pressure gradient that are variable throughout the flow
domain (the velocity likewise scales differently at
different cross-sectional locations) when rotation is
allowed.  Their magnitudes are proportional to the
product “density  rpm / viscosity.”  This effect generally
decreases the flow rate (as rotation speed increases) for a
fixed pressure gradient – this nontrivial modification
applies even to simple Newtonian fluids without shear-
thinning.

 Non-Newtonian fluids (even without rotation and three-
dimensionality) exhibit shear-thickening and shear-
thinning properties.  In a concentric annulus with a
rotating inner pipe, drilling fluid viscosity will decrease
due to azimuthal motion so that net flow rate increases
relative to the non-rotating case assuming that pressure
gradient is fixed.  Complications arise when this is
countered by the effects of eccentricity – computational
methods are required to determine the exact balances
between the two.

 Non-Newtonian flows in eccentric borehole annuli with
rotation will exhibit shear-dependent changes to viscosity,
plus changes to applied pressure gradient that depend on

rotation speed, fluid density and viscosity (the “apparent
viscosity” now varies throughout the flow domain).
Simple rescaling arguments cannot be used to deduce
flow properties for u(y,z) because the governing equations
are extremely complicated in form.

 For non-Newtonian flows, laboratory testing and
extrapolation is not possible because of the foregoing
complications – hence, the only recourse for prediction
and job planning is full-scale testing with actual nonlinear
fluids or, alternatively, detailed computational fluid-
dynamics analysis.

Example 7-6.  Effect of steady rotation for power law
flows in highly eccentric annuli at low densities
(foams).

In this example, we examine a cross-section with high
eccentricity and also allow for nonlinear power law fluid
motion.  Here, the eccentricity is 0.5.  Results for a non-
rotating pipe are given in Figure 7-6a, where a steady flow
rate of 1,052 gpm is indicated.  The time required to achieve
steady-state is approximately one second.  What happens if we
rotate the drillpipe at 300 rpm?  Figure 7-6b shows that with
rotation, the time to reach steady conditions is reduced; also,
the flow rate decreases to 905.8 gpm.  This suggests that in the
complementary problem when volume flow rate is fixed, the
effect of rotation is to increase (the absolute value of) pressure
gradient.  Consistent with the previous example, the decrease
in flow rate occurs because of inertia effects.  We emphasize
that the flow rate reduction due to rotation seen here is a
sizeable 16%.  Finally, in Figure 7-6c, we re-run the
simulation with the initial fluid assumed to be non-rotating
and flowing.  The results show an equilibration time of one
second between steady states so that flow changes are sudden
and dangerous.  The steady-state flow rate is again about 900
gpm.  There is a “bump” in the gpm vs time curve, one seen
repeatedly in many such simulations.  Whether or not this
effect is real will require laboratory observation.  All of the
calculations for this example were performed stably, as the
line graphs show, and required only 2-3 seconds of computing
time.
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Figure 7-6a.  Power law flow with non-rotating pipe.

Figure 7-6b.  Power law flow with rotating pipe (zero starting
conditions).

Figure 7-6c.  Power law flow with rotating pipe (from flowing
conditions).

It is important to point out some important software
details associated with flow initialization.  For steady flow
formulations, the initial state of the flow does not appear as a
parameter because there is no variation in time (actually, it
does in a numerical sense, since initial solution guesses are
taken, although internally to the software).  For transient
formulations, the initial state must be specified.  If quiescent
stagnant-flow conditions are selected, the box shown in Figure
7-6d is checked and “Simulate” can be clicked immediately.

Figure 7-6d. Assuming quiescent, stagnant-flow initial
conditions.

On the other hand, the fluid may be moving initially at t
= 0, and then, the transient flow specifications shown in the
user interface is applied. If the initial flow is not rotating, we
know that its solution does not depend on density; we can
therefore calculate it assuming a very small value of 
together with large time steps.  If we wish to initialize to a
non-rotating steady flow, the message box in Figure 7-6e
appears, reminding the user to click “Create Flow” to start this
process.  Once this is completed, the “Simulate” button can be
clicked to perform the required transient analysis.

Figure 7-6e.  Creating a non-rotating, steady initial flow.

If the starting flow is rotating, its solution does depend
on density and time steps will need to be very small to ensure
convergence.  This initialization is not supported at the present
time because the solution procedure cannot be made as robust
or automatic as desired, but continuing research is being
pursued in this area.
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Example 7-7.  Effect of steady rotation for power law
flows in highly eccentric annuli at high densities
(heavy muds).

We emphasized earlier that for non-rotating flows, the
effects of density vanish at large times.  Thus, in computing
non-rotating steady-state flows with the transient algorithm, it
is advantageous to use as small a fluid density as possible in
order to quickly converge the calculations.  Here we wish to
evaluate the effects of mud weight under rotating conditions.
For the non-Newtonian eccentric flow in Figure 7-7a, a very
low specific gravity of 0.01 leads to a flow rate of  898.5 gpm.
Next we wish to consider the opposite extreme, e.g., a heavy
mud or cement with a specific gravity of two.  Because the
unstable convective term never vanishes when the pipe rotates
(its magnitude is proportional to fluid density and pipe rpm),
we decrease the time step to 0.0001 sec and increase the
number of time steps simulated.  The resulting flow rate is a
much lower 135.1 gpm.  Computation times for the two runs
are five seconds and two minutes, approximately.  Finally, we
reduce the specific gravity to 1.0, i.e., an unweighted mud.
Will the flow rate vary linearly with density, that is, fall
midway between 135.1 and 898.5 gpm?  Figure 7-7c shows
that the flow rate is, in fact, 160.1 gpm.  This unpredictability
shows why computer models are important to real-world field
job planning.

Figure 7-7a.  Very low density fluid (e.g., foam) at high rpm.

Figure 7-7b.  Very high density fluid (e.g., heavy mud or
cement) at high rpm.

Figure 7-7c.  Unweighted fluid (e.g., water or brine)
at high rpm.

Example 7-8.  Effect of mudpump ramp-up and ramp
down flowrate under non-rotating and rotating
conditions.

In Figure 7-8a, we consider a power law fluid in an
eccentric annulus under a constant imposed pressure gradient
of – 0.005 psi/ft with the drillpipe completely stationary.  This
is seen to produce a steady-state flow rate of 1,051.8 gpm as
shown.  In practice, the mud pump starts and stops, and
transient effects are associated with ramp-up and ramp-down.
We ask, “How are pressure gradient and flow rate transient
properties related?”
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Figure 7-8a.  Constant pressure gradient calculation.

To answer this question, we modify several menu entries
of Figure 7-8a so that the pressure gradient is no longer
constant.  The assumption shown in Figure 7-8b allows a
sinusoidal ramp-up from quiet conditions to the previous value
of – 0.005 psi/ft, followed by a full ramp-down. This is
accompanied by time mesh refinement plus the use of
additional time steps.  Clicking on the “?” to the far right of
the pressure gradient menu produces the left-side diagram of
Figure 7-8c showing pressure assumptions.  The right-side
diagram gives the computed volume flow rate as a function of
time.

Figure 7-8b.  Mudpump ramp-up and ramp-down.

Figure 7-8c.  Assumed pressure gradient and
calculated flow rate.

Next, we determine the effect of drillstring rotation.   We
simply change the zero rotation input in Figure 7-8b to allow
for a 100 rpm rotation rate as shown in Figure 7-8d.  For the
same pressure gradient variation as above, the flow rate is now
substantially reduced as shown in Figure 7-8e.

Figure 7-8d.  Increasing rotation rate to 100 rpm.

Figure 7-8e.  Significantly reduced volume flow rate with
rotation.
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Example 7-12.  Combined rotation and sinusoidal
reciprocation in presence of mudpump flow rate
ramp-up for yield stress fluid.

This comprehensive example illustrates the high level of
simulation complexity offered by the math model.   Here we
again consider an eccentric annulus, however, now containing
a Herschel-Bulkley yield stress fluid.  The drillpipe is allowed
to axially reciprocate sinusoidally in time, while rotation rate
increases linearly with time.  The mudpump pressure gradient
is allowed to steepen with time from start-up to describe
increased pumping action.  All of these effects are coupled
nonlinearly. They can be computed quickly and stably, and if
numerical instabilities are encountered, they can be remedied
by decreasing time step size.  To accommodate this
possibility, the algorithm is efficiently coded to make optimal
use of memory resources and will allow up to 10,000,000 time
steps, for which calculations may require about fifteen minutes
or more.  The assumptions are shown in Figure 7-12a, while
detailed pipe displacement histories, applied pressure
gradients and computed volume flow rate are given in Figure
7-12b.

Figure 7-12a.  Basic assumptions, comprehensive example.

Figure 7-12b.  Additional assumptions and computed flow
rate with time.

Preface to Example 7-4.  The foregoing examples
address pipe rotation in eccentric holes.  Again, for such
problems, a nonlinear convective term (proportional to density
and rpm, and inversely proportional to viscosity) basically
alters the effective pressure gradient “seen” by the governing
equation.  For eccentric flows, numerical methods are
required, and we have used boundary-conforming curvilinear
grids in the implementations.  When the underlying annular
geometry is concentric, it turns out that closed form analytical
solutions can be developed for power law flows.

Example 7-4.  Effect of steady rotation for laminar
power law flows in concentric annuli.

In this example, we use the closed form analytical
solution developed for steady, rotating, power law fluids in
concentric annuli to explore pressure gradient and flow rate
relationships in a non-Newtonian application.  The user
interface is shown in Figure 7-4a where the third option is
selected.  Using automatically defined internal parameters, this
simulation plots flow rate (gpm) on the vertical axis and
pressure gradient (dp/dz) and rotation rate (rpm) on the two
horizontal axes, as shown in Figure 7-4b.  It is clear from this
figure that as the (absolute value of) pressure gradient
increases for fixed rpm, flow rate increases, as would be
expected.  Interestingly, as the rotation rate increases at fixed
dp/dz, the flow rate also increases.  This is explained by the
reduction in apparent viscosity induced by rotation due to
shear-thinning.

This result also appears in several related and well
known investigations external to the petroleum industry.  It is,
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importantly, consistent with the results of classical studies in
Bird, Armstrong and Hassager (1987).  Their Example 4.2-5
conclusion “shows that the flow in the axial direction is
enhanced because of the imposed shearing in the tangential
direction, since this additional shearing causes the viscosity to
be lowered.”  The numerical analysis by Savins and Wallick
(1966) also supports the findings.  From their Abstract, “the
most interesting consequence of the coupling effect is that the
axial flow resistance is lowered in a helical flow with the
result, for example, that for a given applied axial pressure
gradient, the axial discharge rate in a helical flow field is
higher than in a purely annular flow field.”  In the analysis, the
authors observe that “it is seen that the effect of a helical flow
produced by impressing a relative rotation on the z directed
annular flow is to increase the axial discharge rate.  This result
is not unexpected.  The preceding viscosity profile analyses
showed that the shear-dependent viscosity is lowered, hence
the axial flow resistance is lowered.”  Finally, from their
Summary, “in contrast, if the fluid were Newtonian the
superimposed laminar flows would be noninterfering in that
there would be no coupling among the discharge rate, axial
pressure gradient, relative rotation, and torque through the
viscosity coefficient.”  Recall that we have proven this latter
observation directly from the governing Navier-Stokes
equations.  Several subsequent theoretical and experimental
petroleum publications also support the foregoing results.

It is important to emphasize that, in all of the above
works and in the present Example 7-4, laminar, concentric
annular flows are considered.  For concentric flows, the
nonlinear inertia (or convective) terms in the governing
momentum equations vanish identically and velocity coupling
is possible only through changes to apparent viscosity or
shear-thinning.  Early publications focused, fortuitously, on
this limit – from the mathematical perspective, for simplicity,
and from the drilling perspective, by the vertical well
applications prior to 1990.  In the past two decades, with
deviated and horizontal wells becoming predominant in
exploration, conflicting relationships between pressure
gradient and flow rate have been reported.  These conflicts
arise because of annular eccentricity.  In general non-
Newtonian flows, shear-thinning is always present; however,
when eccentricity exists, the applied pressure gradient is
effectively modified by a spatially-dependent convective term
that is proportional to fluid density and rotation rate.  The
complicated interplay between flow rate, applied pressure
gradient, fluid rheology, rotation rate and annular geometry
cannot be described by casual “rules of thumb,” however, it
can be obtained as the solution of coupled nonlinear partial
differential equations.

Let us return for now to concentric annular flow analysis.
Figure 7-4c provides a different view of the results from that
provided by Figure 7-4b.  It is obtained by selecting the last
option in Figure 7-4a.  Note that each figure uses hundreds of
solution points, and both are produced, because analytical
solutions are used, in less than one second of computing time.
Again, the increase in flow rate (for a fixed pressure gradient)

obtained when rotation rate increases is well accepted in the
older literature, but confusion and inconsistencies have arisen
in recent studies, a point we address in several examples next.

Figure 7-4a.  Steady, rotating, power law simulator.

Figure 7-4b.  GPM vs RPM and dp/dz.

Figure 7-4c.  dp/dz vs RPM and GPM.

Supporting simulator, Model 5-3.   The model in
Example 7-4 above deals with power law flows in concentric
annuli with inner pipe rotation.  While the solution is
analytical and in closed form, it is not exact, since
(reasonable) approximations were made to facilitate solution,
e.g., replacing values of certain functions by midpoint values.
On the other hand, a completely exact solution for general
Herschel-Bulkley fluids with non-zero yield stresses can be
developed for non-rotating flow in concentric annuli without
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approximation.  Essentially, when the pressure gradient, yield
stress, and inner and outer radii are given (in the obvious
nomenclature below), the constant C found from the
(relatively simple) solution of

r-   

 ( ½ dp/dz  r  - C/r - yield ) 1/ n  dr
Ri

---------------------------------------------- = 1 
Ro   

 (- ½ dp/dz  r  + C/r - yield ) 
1/ n  dr

r+

is used to evaluate the formulas below for the sheared zones
on either side of the cylindrical ring plug.  These, in turn, are
used to compute exact volume flow rate.

Ro   

U(r) = + (1 /K)  (- ½ dp/dz  r  + C/r - yield ) 1/ n  dr
r

r   

U(r) = + (1 /K)  ( ½ dp/dz  r  - C/r - yield ) 1/ n  dr
Ri

Software interface and typical results.   The model
derived here is called and executed from the steady flow user
interface under the “Utility” sub-menu.  The complete output
file under the assumptions shown is duplicated below.

Figure 5-3b.  Exact Herschel-Bulkley concentric model.

An example of the output from the Herschel-Bulkley
solver is shown below.

 Herschel-Bulkley (Concentric) Annulus Model:
 Exact solution to differential equations ...

 INPUT SUMMARY
 Inner annular radius  (in):  0.2000E+01
 Outer annular radius  (in):  0.4000E+01
 Pressure gradient (psi/ft):  -.2388E-01
 Fluid exponent n (dimless):  0.8000E+00
 Fluid yield stress   (psi):  0.9028E-03
 K factor (lbf sec^n/sq in):  0.1375E-04

 Plug is between R =   2.5 and   3.4 in.

 R =  2.0 in, U = 0.0000E+00 ft/s
 R =  2.1 in, U = 0.2076E+01 ft/s
 R =  2.2 in, U = 0.3513E+01 ft/s
 R =  2.3 in, U = 0.4399E+01 ft/s
.
.
.

 R =  3.6 in, U = 0.4396E+01 ft/s
 R =  3.7 in, U = 0.3762E+01 ft/s
 R =  3.8 in, U = 0.2827E+01 ft/s
 R =  3.9 in, U = 0.1577E+01 ft/s
 R =  4.0 in, U = 0.0000E+00 ft/s

 Volume flow rate BPM: 0.1124E+02
               cuft/s: 0.1052E+01
                  GPM: 0.4719E+03

    Rad (in)  Speed  (ft/s)   0
                              _______________________
      4.00     0.0000E+00     *
      3.90     0.1577E+01     |       *
      3.80     0.2827E+01     |               *
      3.70     0.3762E+01     |                     *
      3.60     0.4396E+01     |                         *
      3.50     0.4750E+01     |                           *
      3.40     0.4863E+01     |                            *
      3.30     0.4882E+01     |                            *
      3.20     0.4882E+01     |                            *
      3.10     0.4882E+01     |                            *
      3.00     0.4882E+01     |                            *
      2.90     0.4882E+01     |                            *
      2.80     0.4882E+01     |                            *
      2.70     0.4882E+01     |                            *
      2.60     0.4882E+01     |                            *
      2.50     0.4882E+01     |                            *
      2.40     0.4822E+01     |                           *
      2.30     0.4399E+01     |                         *
      2.20     0.3513E+01     |                   *
      2.10     0.2076E+01     |          *
      2.00     0.0000E+00     *

Figure 5-3c.  Exact velocity profile result.

Supporting simulator, Model 5-1.  Still another exact
solution possible is that for non-rotating Newtonian flow in a
concentric annulus with arbitrary constant pipe speed which
may be positive, zero or negative, e.g., Figure 5-1a.  The user
interface appears in Figure 5-1b.

Ri

Ro

V

dP/dz

z

r

Figure 5-1a.  Steady, concentric, Newtonian flow with
moving pipe.

Figure 5-1b.  Software user interface.
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The exact volume flow rate used in this model is obtained
from the formula

Q =  V [(Ro
2 - Ri

2) /(2 log e (Ro /Ri)) - Ri
2
 ]   

+ ( Pz /(8)) [(Ro
2 - Ri

2) 2 + (Ri
4 - Ro

4) log e (Ro /Ri)] /
log e (Ro /Ri)

Supporting simulator, Model 5-2.  In many field
applications, however, density stratification is obtained when
drilling stops for appreciable time periods.  This is know as
“barite sag.”  We have shown, again using analytical math
models, that a single dimensionless “channel” parameter Ch
controls the resulting flow, with Ch = U2 ref /gL d cos
(the symbols refer to flow speed, density, nominal density
difference, gravity and inclination).  Depending on the value
of Ch, recirculating vortex zones are created within the
borehole annulus which, for all practical purposes, block
oncoming flow no differently than a brick would!  These
recirculating eddies have been observed experimentally in
flow loops.  The required calculations, executed via the
interface in Figure 5-2-7b,  involve iterative solutions of the
nonlinear Euler equations, which are performed internally,
within seconds.  For example, streamline outputs are shown in
Figures 5-2-8a,b,c which illustrate possible danger situations
that may be encountered in drilling practice.

Figure 5-2-7b.  Stratified flow, user interface.

Figure 5-2-8a.  Small recirculation zone.

Figure 5-2-8b.  Large flow blockage.

Figure 5-2-8c.  Safe flow, straight streamlines.

In order to calculate pressure profiles along the hole axis
inside the drillpipe and in the annulus, pipe flow solutions in
addition to those for annular flow are needed.  An exact
solution available in the literature for Herschel-Bulkley pipe
flow has been programmed in a simple utility.  As will be
clear later in this paper, both this pipe flow solution and the
prior eccentric annular solutions, will be useful in calculating
time-dependent pressure profiles along the borehole, as are
obtained when multiple slugs of non-Newtonian fluid are
pumped down the drillpipe following a general pump
schedule.  We give for reference next the exact Herschel-
Bulkley pipe flow solver used in determining local pressure
drops.

Supporting simulator, Model 9-4 for Herschel-Bulkley
pipe flow analysis.

As noted, the calculation of pressure at the drillbit (in the
formation) and pressure along the borehole is completely
determined by the distribution of pressure gradient in the hole
and the value of pressure at the surface choke.  If, however,
the pressure needed at the mudpump to support the flow is
required, also needed are the pressure loss through the drillbit
as well as the pressure drop in the drillpipe.  For non-rotating
pipe flow, exact, closed form, circular pipe flow solutions for
radial velocity distribution and total volume flow rate are
available for Herschel-Bulkley fluids and have been coded in
software for convenient use.  Thus, the same properties for the
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subsets including Newtonian, power law and Bingham plastic
fluids are also available.

The general mathematical solution has been incorporated
into two software programs for convenience.  The first, shown
in Figure 9-4-1a, solves the Equation 9-3-5d for pressure
gradient when the flow rate is given.  Note that this represents
a nonlinear algebraic equation for the unknown.  The example
given here applies to a 10 cp Newtonian fluid.  For the
parameters shown, the required pressure gradient is about –
0.001 psi/ft.  In Figure 9-4-1b, we introduce yield stress to this
fluid, so that it now acts as a Bingham plastic.  We expect that
the pressure gradient should steepen since there is greater
difficulty in moving the fluid.  In fact, the pressure gradient is
now about – 0.015 psi/ft.  Finally, in Figure 9-4-1c, we change
the fluid exponent from 1.0 to 0.8, so that the fluid is now of
Herschel-Bulkley type.  In this case, the pressure gradient is
obtained as – 0.014 psi/ft.  It is interesting how the presence of
yield stress introduces large changes to pressure gradient over
Newtonian flows.

Figure 9-4-1a.  Newtonian fluid, flow rate given.

Figure 9-4-1b.  Bingham plastic, flow rate given.

Figure 9-4-1c.  Herschel-Bulkley fluid, flow rate given.

In Figure 9-4-2a, we demonstrate the second use of
Equations 9-3-5a,b,c,d, namely, computing total flow rate and
radial velocity distribution for any Herschel-Bulkley fluid.

Here, a Newtonian fluid is assumed, and the classic
paraboloidal velocity profile is obtained.  In Figure 9-4-2b, we
illustrate this capability with a Herschel-Bulkley fluid.  The
graph clearly indicates the presence of a plug zone.  The plug
radius is also given in the output.

Figure 9-4-2a.  Newtonian fluid, pressure gradient given.

Figure 9-4-2b.  Herschel-Bulkley fluid, pressure gradient
fluid given.

Time-Dependent Pressure Profile in Eccentric
Borehole (and at Drill Bit) with Multiple Herschel-
Bulkley Fluids Pumped Under General Schedule.

This section discusses the general problem shown in
Figure 9-1-1.  This is particularly relevant to managed
pressure drilling (MPD) and also to cementing operations with
combined mud, spacer and cement movement.  We will
discuss the figure below with regard to MPD operations.
Here, multiple fluids (each with its own unique rheological
properties) are pumped down the drillpipe following a general
pumping schedule.  Since different numbers of fluids will
occupy the pipe and borehole at different times, with their
positions obviously depending on time, it is clear that the
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pressure distribution along the borehole (and, hence, at the
drill bit) will vary with time.  The problem we address is the
complete pressure solution versus space and time.  We note
that the drilling system shown in Figure 9-1-1 can be
topologically “unwrapped” into the form given in Figure 9-2-
1.  Hence, we turn to that diagram, which greatly simplifies
the discussion (bends only introduce centrifugal effects which
are modeled in the steady simulator).

Pressure Psurf(t)
at surface choke

Drillbit Pbit(t)

Mud

Multi-fluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

Figure 9-1-1.  General managed pressure drilling formulation.

Discussion 9-2.  Interface tracking and total pressure
drop for multiple fluids pumped in drillpipe and
eccentric borehole system.

In this example, we will consider a centered or
eccentered drillpipe (with cross-sectional area Apipe) located in
a borehole annulus whose geometry is unchanged along its
length.  The annular area is Aannulus.  Note that while pipe area
is simply available from “Rpipe

2,” the same is not true for the
annulus if the cross-sectional contours from two initially
eccentered circles have been edited to incorporate washouts,
cuttings beds or fractures.  If so, the “Steady 2D” simulator
automatically computes and displays total cross-sectional area
by summing incremental trapezoidal areas constructed from
the curvilinear grid.

Now, mud progresses down the drillpipe, then out
through the drillbit, and finally, flows upward in the return
annulus.  At the outset t = 0, a single initial fluid with
Herschel-Bulkley properties (n0, K0, 0,0) is assumed to exist in
the pipe and annular system (n is the fluid exponent, K is the
consistency factor, and 0 is the yield stress).  The initial fluid
may be flowing or quiescent.  At t = 0+, the mud pump starts
to act according to a user-defined pumping schedule with
piecewise constant rates.   At t = t0 = 0+, Fluid “1” with
properties (n1, K1, 0,1) is pumped into the pipe at the volume

flow rate of Q1, while at t = t1, a second Fluid “2” with
properties (n2, K2, 0,2) is pumped at rate Q2, and so on.  In
fact, we have

 Fluid “1” pumped at rate Q1: t0  t < t1

 Fluid “2” pumped at rate Q2: t1  t < t2

 Fluid “3” pumped at rate Q3: t2  t < t3

 Fluid “4” pumped at rate Q4: t3  t < t4

 Fluid “5” pumped at rate Q5: t  t4

The overall pumping process is illustrated at the top of
Figure 9-2-1.  Here, fluid introduced at the far right into the
drillpipe travels to the left, and then turns at the drillbit (not
shown), and finally progresses to the very far right.  The
middle diagram shows five interfaces (starting at t0, t1, t2, t3

and t4) associated with the onset of each pump actions.  The
location “z1” (using the “little z” left-pointing coordinate
system shown) describes the interface separating the initial
fluid ahead of it with Fluid “1” just behind it.  Similarly, “z2”
separates Fluid “1” ahead of it and Fluid “2” behind it.  The
last Fluid “5” is a single fluid that is pumped continuously
without stoppage with flow rate Q5 for t  t4.  While more
interfaces are easily handled programming-wise, a limit of five
(which models six fluid slugs) to enable rapid modeling and
job prototyping, was assumed, since this number suffices for
most rigsite planning purposes.  Once the first interface
reaches the end of the drillpipe, shown with length L, that is,
z1 = L, it turns into the borehole annulus and travels to the
right.  Similar descriptions apply to the remaining interfaces.
Annular interfaces are described by the “big Z” right-pointing
coordinate system at the bottom in Figure 9-2-1.  When Z1 =
L, the first fluid pumped will have reached the surface.

Mud
pump

z1 z2 z3 z4 z5

Z1Z2Z

L

Z5

Pipe or
casing

Annulus

z

End

Figure 9-2-1.  General pumping schedule.

Figure 9-2-1 provides a “snapshot” obtained for a given
instant in time.  At different times, the locations of the
interfaces will be different, and pressure profiles along the
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borehole (and hence, at the drillbit) will likewise be different.
Also, while the discussion focuses on drilling applications
with distinct mud interfaces, it is clear that all of the results
apply to cement-spacer-mud systems.

Now, we wish to determine the locations of z1,2,3,4,5 and
Z1,2,3,4,5 as functions of time.  In general, this is a difficult
problem if the fluids are compressible, or if significant mixing
is found at fluid interfaces, or both.  However, if the lengths of
the fluid slugs are long compared to the annular diameter (so
that mixing zones are not dynamically significant), and
further, if the pump acts instantaneously and transient fluid
effects reach equilibrium quickly, interface tracking can be
accomplished kinematically.  Once the locations of all
interfaces are known for any instant in time, pressure drop
calculations (for each fluid slug) proceed using the  non-
Newtonian flow models developed previously.

Two output tables are provided by the “interface
tracker.” The calculations are performed almost
instantaneously by the software model.  The two are,
respectively, “Drillpipe Fluid Interfaces vs Time” and
“Annular Fluid Interfaces vs Time,” as shown in Figures 9-2-2
and 9-2-3.  The numbers assumed for these tables are
obviously not realistic, and for this reason, the units shown in
the headings should be ignored for now.  They were chosen so
that all results fit on the printed page, with all values allowing
convenient visual checking and understanding of the computer
output.

        ELAPSED TIME    FLOW       Drillpipe Fluid Interface (feet)
   Minutes  Hours   GPMs     z(1)    z(2)    z(3)    z(4)    z(5)

       0       0.      1       0       0       0       0       0
       1       0.      1       1       0       0       0       0
       2       0.      1       2       0       0       0       0
       3       0.      1       3       0       0       0       0
       4       0.      1       4       0       0       0       0

       5       0.      2       5       0       0       0       0
       6       0.      2       7       2       0       0       0
       7       0.      2       9       4       0       0       0
       8       0.      2      11       6       0       0       0
       9       0.      2      13       8       0       0       0

      10       0.      3      15      10       0       0       0
      11       0.      3      18      13       3       0       0
      12       0.      3      21      16       6       0       0
      13       0.      3      24      19       9       0       0
      14       0.      3      27      22      12       0       0

      15       0.      4      30      25      15       0       0
      16       0.      4      34      29      19       4       0
      17       0.      4      38      33      23       8       0
      18       0.      4      42      37      27      12       0
      19       0.      4      46      41      31      16       0

      20       0.      5      50      45      35      20       0
      21       0.      5      55      50      40      25       5
      22       0.      5      60      55      45      30      10
      23       0.      5      65      60      50      35      15
      24       0.      5      70      65      55      40      20
      25       0.      5      75      70      60      45      25
      26       0.      5      80      75      65      50      30
      27       0.      5      85      80      70      55      35
      28       0.      5      90      85      75      60      40
      29       0.      5      95      90      80      65      45
      30       0.      5     100      95      85      70      50
      31       1.      5       0     100      90      75      55
      32       1.      5       0       0      95      80      60
      33       1.      5       0       0     100      85      65
      34       1.      5       0       0       0      90      70
      35       1.      5       0       0       0      95      75
      36       1.      5       0       0       0     100      80
      37       1.      5       0       0       0       0      85
      38       1.      5       0       0       0       0      90
      39       1.      5       0       0       0       0      95
      40       1.      5       0       0       0       0     100
      41       1.      5       0       0       0       0       0

Figure 9-2-2.  “Drillpipe Fluid Interfaces vs Time.”

Note that 0’s at early times along a z column indicate
absence of the particular fluid in the drillpipe.  Also, once the
interface has reached the position “100,” the end of the
borehole in this illustration, the subsequent 0’s are no longer
meaningful and are used only to populate the table.  Also, the
very small annular area of Aannulus selected later was designed
so that we can “watch fluid move” in the table of Figure 9-2-3.

  ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
   Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)

       0       0.      1       0       0       0       0       0
       1       0.      1       0       0       0       0       0
       2       0.      1       0       0       0       0       0
       3       0.      1       0       0       0       0       0
       4       0.      1       0       0       0       0       0

       5       0.      2       0       0       0       0       0
       6       0.      2       0       0       0       0       0
       7       0.      2       0       0       0       0       0
       8       0.      2       0       0       0       0       0
       9       0.      2       0       0       0       0       0

      10       0.      3       0       0       0       0       0
      11       0.      3       0       0       0       0       0
      12       0.      3       0       0       0       0       0
      13       0.      3       0       0       0       0       0
      14       0.      3       0       0       0       0       0

      15       0.      4       0       0       0       0       0
      16       0.      4       0       0       0       0       0
      17       0.      4       0       0       0       0       0
      18       0.      4       0       0       0       0       0
      19       0.      4       0       0       0       0       0

      20       0.      5       0       0       0       0       0
      21       0.      5       0       0       0       0       0
      22       0.      5       0       0       0       0       0
      23       0.      5       0       0       0       0       0
      24       0.      5       0       0       0       0       0
      25       0.      5       0       0       0       0       0
      26       0.      5       0       0       0       0       0
      27       0.      5       0       0       0       0       0
      28       0.      5       0       0       0       0       0
      29       0.      5       0       0       0       0       0
      30       0.      5       0       0       0       0       0
      31       1.      5       0       0       0       0      10
      32       1.      5       0       0       0      10      20
      33       1.      5       0       0       0      20      30
      34       1.      5       0       0      10      30      40
      35       1.      5       0       0      20      40      50
      36       1.      5       0       0      30      50      60
      37       1.      5       0      10      40      60      70
      38       1.      5       0      20      50      70      80
      39       1.      5       0      30      60      80      90
      40       1.      5       0      40      70      90     100
      41       1.      5      10      50      80     100       0
      42       1.      5      20      60      90       0       0
      43       1.      5      30      70     100       0       0
      44       1.      5      40      80       0       0       0
      45       1.      5      50      90       0       0       0
      46       1.      5      60     100       0       0       0
      47       1.      5      70       0       0       0       0
      48       1.      5      80       0       0       0       0
      49       1.      5      90       0       0       0       0
      50       1.      5     100       0       0       0       0
      51       1.      5       0       0       0       0       0

Figure 9-2-3.  “Annular Fluid Interfaces vs Time.”

To facilitate visual interpretation, we have assumed that
Apipe = 1 and Aannulus = 0.5, so that the nominal linear
displacement speeds in the pipe and annulus are Upipe = Q/Apipe

and Uannulus = Q/Aannulus.  The borehole length is assumed for
clarity to be 100.  At the same time, we pump according to the
schedule

 Fluid “1” at a rate of Q1 = 1:   0 = t0  t < t1= 5
 Fluid “2” at a rate of Q2 = 2:   5 = t1  t < t2= 10
 Fluid “3” at a rate of Q3 = 3: 10 = t2  t < t3= 15
 Fluid “4” at a rate of Q4 = 4: 15 = t3  t < t4= 20
 Fluid “5” at a rate of Q5 = 5: t  t4= 20

where the five interfaces originate at t0, t1, t2, t3 and t4.  We
next explain Figure 9-2-2.  The left column provides elapsed
minutes, while the second provides elapsed hours.  The
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volume flow rate is given in the third column.  The
corresponding drillpipe fluid interfaces z1,2,3,4,5 are given in the
five remaining columns.   Also, each change in flow rate
(associated with a new interface) is separated by a single
horizontal line spacing to enhance clarity.  Consider the result
for z1.  In the first time block with Upipe = 1/1 = 1, the interface
advances at a rate of “1.”  In the second block with Upipe = 2/1,
the interfaces advances at the rate “2.”  As time increases,  the
easily recognized rate increments are 3, 4 and 5 following the
above pump schedule.

The z1 interface starts moving at t = 0.  Now we turn to
the second interface and study the column for z2 results.  At t
= 5, the second interface starts moving.  Because we are
already in the second time block, the interface moves at the
rate “2.” Subsequent speeds are 3, 4 and 5.  Similarly, z3 starts
at t = 10 and rate increments with 3, followed by 4 and 5, and
so on.  We have described Figure 9-2-2 from the perspective
of tracking individual fronts. However, the table is important
for pressure calculations.  Let us consider the results obtained
at t = 26 (these are shown in bold font for emphasis).  In
particular, we have
       ELAPSED TIME    FLOW       Drillpipe Fluid Interface (feet)

   Minutes  Hours   GPMs     z(1)    z(2)    z(3)    z(4)    z(5)

      26       0.      5      80      75      65      50      30

This printout indicates that, at t = 26, the front z1 is
located at z = 80, while the last front z5 is located at z = 30.
The drillpipe thus contains six distinct fluid slugs at 100 > z >
80, 80 > z > 75, 75 > z > 65, 65 > z > 50, 50 > z > 30 and 30 >
z > 0 where “100” refers to the assumed borehole length.  In
fact –

100> z > 80 contains “initial fluid” with properties (n0, K0, 0,0)
        80 > z > 75 contains Fluid “1” with properties (n1, K1, 0,1)
        75 > z > 65 contains Fluid “2” with properties (n2, K2, 0,2)
        65 > z > 50 contains Fluid “3” with properties (n3, K3, 0,3)
        50 > z > 30 contains Fluid “4” with properties (n4, K4, 0,4)
        30 > z >   0 contains Fluid “5” with properties (n5, K5, 0,5)

If a non-Newtonian flow model for a Herschel-Bulkley
fluid in a circular pipe were available that gave the pressure
gradient (P/z)pipe,n for any of the given fluid slugs “n”
flowing at rate Q with a pipe radius (Apipe/)1/2, then the total
drillpipe pressure drop is simply calculated from (100 – 80)
(P/z)pipe,0 + (80 – 75) (P/z)pipe,1 + (75 – 65) (P/z)pipe,2 +
(65-50) (P/z)pipe,3 + (50 – 30) (P/z)pipe,4 + (30 – 0)
(P/z)pipe,5.  The flow rate Q used would be the one applicable
at the time the snapshot was taken, in this case, Q = 5 at t = 26
(a single rate applies to all slugs at any instant in time).  Now,
at time t = 26, Figure 9-2-3 shows, as indicated by “0’s,” that
none of the pumped fluids have arrived in the annulus, that is
–

    ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
   Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)
      26       0.      5       0       0       0       0       0

Thus, the only fluid residing in the annulus is the initial fluid.
If the pressure gradient obtained from an eccentric flow
analysis is (P/z)annulus,0, then the pressure drop in the annulus

is just (100 – 0) (P/z)annulus,0.  If we further denote by  the
pressure drop through the drillbit, then the total pressure drop
through the entire pipe-bit-annulus system is obtained by
summing the prior three results, that is, (100 – 80) (P/z)pipe,0

+ (80 – 75) (P/z)pipe,1 + (75 – 65) (P/z)pipe,2 + (65-50)
(P/z)pipe,3 + (50 – 30) (P/z)pipe,4 + (30 – 0) (P/z)pipe,5 + 
+ (100 – 0) (P/z)annulus,0, which is the pressure (additive to
the surface choke pressure PSURF) required at the mud pump to
support this multi-slug flow.

The software that creates Figure 9-2-2 also provides the
times at which fluid interfaces in the drillpipe enter the
borehole annulus.  These are obtained from the table in Figure
9-2-2 by noting the “100” marker.  In this case, we have

Borehole total length L, is:    100 ft.
Fluid “1” enters annulus at:     30 min.
Fluid “2” enters annulus at:     31 min.
Fluid “3” enters annulus at:     33 min.
Fluid “4” enters annulus at:     36 min.
Fluid “5” enters annulus at:     40 min.

We next consider another time frame, say t = 36, for
which the drillpipe interfaces have entered the annulus, and
explain how annular pressure drops are determined, e.g., see
Figure 9-2-4.  For this time frame, Figure 9-2-3 gives

    ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
   Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)

          36       1.      5       0       0      30      50      60

This indicates that three interfaces exist in the annulus, with Z1

located at the far right Z = 60, followed by Z2 at Z = 50 and Z3

at Z = 30.  Since the fluid ahead of Z1 is the “initial fluid,” the
total annular pressure drop is calculated from the sum (100 –
60) (P/z)annulus,0 + (60 – 50) (P/z)annulus,1 + (50 – 30)
(P/z)annulus,2 + (30 – 0) (P/z)annulus,3 where subscripts
denote fluid type for the annular model.

Z1Z2Z Z3

Annulus

Z

Z1Z2Z3
0

PSURF

PBIT

P

Time snapshot,
annular Z values
from interface
tracker

L

Figure 9-2-4.  Example annular interface distribution.

We note that the actual pressure PBIT at the drillbit in the
formation is obtained by adding the total annular pressure drop
to the pressure PSURF obtained at the surface choke.  The value
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of PSURF is in itself a “boundary condition,” and, importantly,
the pressure PBIT at the bottom of the annulus in the formation
does not depend on the pressure drop  through the drillbit.
On the other hand, the pressure required at the pump to move
the system flow includes pipe, bit and annular losses, as
shown in Figure 9-2-5 for one interface configuration.

Z

Z1Z2Z3
0

PSURF

PBIT

P

Time snapshot,
annular Z values
from interface
tracker

L"4""5"

PBIT + 

PPUMP

P

Drillpipe
or casing
domain

Figure 9-2-5.  Complete drillpipe-drillbit-annulus system.

THREE-DIMENSIONAL, TRANSIENT, MULTIPHASE
INTERFACIAL FLOW ANALYSIS

Let us recall that, for purely steady, two-dimensional,
non-rotating, single-phase flow of a yield-stress or non-yield
non-Newtonian fluid, the general partial differential equation
below applies.

 (N u/y)/y  +  (N u/x)/x  = P/z                         (4)

We again emphasize that the above equation can be easily
solved in seconds for highly eccentric annuli with or without
axial pipe movement, using methods based on boundary-
conforming curvilinear coordinates, with either pressure
gradient or volume flow rate specified, via the software
implementation in Fig. 4a.

When the inner pipe rotates, the method of Fig. 4a does
not apply, since the numerical solution of a purely steady
formulation is unstable.  Again, this does not mean that steady
solutions with rotation are not possible.  As demonstrated in a
companion work on the effect of rotation on flowrate and
pressure gradient in eccentric holes, steady, rotating flow
solutions can be easily obtained as the large-time asymptotic
solution of a transient formulation.  This is accomplished
using the code in Fig. 4d, which solves the coupled, single-
phase, momentum equations in the axial and azimuthal
directions on curvilinear grids, again for extended Herschel-
Bulkley fluids, with or without axial pipe movement.  The
solution process requires seconds for low-density fluids, but
for fluids denser than water, may require 2-3 minutes of
computing time.

For the remainder of this paper, we will therefore assume
that the axial pressure gradient on a single-phase flow basis is
readily available for inner pipe that is moving both axially and
azimuthally using the formulations in Fig. 4a or Fig. 4d.
These pressure gradients, as we will see, provide the auxiliary

conditions needed in the formulation and solution of the
general transient, multiphase flow formulation in three spatial
dimensions.

In the approach to the general problem for multiple slugs
of non-Newtonian fluid pumped into the annulus following a
general pumping schedule, we decompose the formulation into
two parts.  We implicitly assume that each slug of fluid is very
long compared to the annular diameter.  Thus, the
macroscopic motion and position of all fluid interfaces can be
approximately determined by the interface tracking model that
we had developed earlier.  Again, the model tracks more than
interface positions versus time: the complete pressure profile
along the borehole is available as a function of time.  This
therefore includes the time history of pressure at the drillbit,
an important consideration for managed pressure drilling.

To obtain interfacial properties related to diffusive and
convective mixing, we adopt the “boundary layer” strategy
used in fluid mechanics.  In flows past airplane wings, for
instance, the pressure field is first determined on an inviscid
flow basis; this pressure is then “impressed” across the
boundary layer at the wing surface and local frictional effects
satisfying a diffusion equation are then calculated.

For this problem, the interface tracking model provides
the macroscopic description, one which dictates where
interfaces are, and then, by applying the methods of Fig. 4a
and Fig. 4d, additionally determines overall pressure histories
at each location along the borehole.  Now, the microscopic
“boundary layer” formulation is one seeking to determine the
details of the convective-diffusive mixing process in a
relatively narrow zone.  Unlike an aircraft boundary layer, the
transition zone or mixing region here can be several feet.  As
in boundary layer theory, we now “zoom” into the nearfield
adjacent to the interface separating two contiguous fluids, as
shown in Figure 9-5-1, in a three-dimensional sense.  We refer
to this as the “Zoom3D” function.

Upipe

Zinterface
Z



Fluidleft

Z Zinterface

Fluidright

PZright from steady
or transient 2D solvers

PZleft from steady
or transient 2D solvers

Upipe



Diffusion zone

UZright = 0UZleft = 0

Cleft = 1 Cright = 0

t = 0

t > 0

Q(t) > 0

Figure 9-5-1.  Transient, multiphase, boundary layer model.

The top diagram in Figure 9-5-1 shows a “left” fluid
displacing a “right” fluid at t = 0.  The interface, per the
interface tracking model, is infinitesimally thin.  At later times
t > 0, the diagram at the bottom applies, indicating a widened
mixing zone.  In the nearfield model, we ask how long the
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zone takes to widen and its corresponding width, which may
vary across the cross-section of the annulus, and also as a
function of time.  The extent of multiphase fluid mixing
dictates the quality in a cementing job.  The multiphase
problem, we might note, is not so important to drilling, but
other features of the three-dimensional method may be useful
in real-world drilling applications.

Mathematical formulation.  Evidently, the annular flow
problem is now three-dimensional, transient and multiphase.
How is this modeled and solved?  We obtain practical
solutions following the approach first suggested by Landau
and Lifschitz (1959), although modified to account for the
complexities of the problem at hand.  Instead of Eq. 4, we now
have the transient axial momentum law in Equation 9-5-1, in
which we have added a third flow direction “z” oriented
axially.  The left side represents nonlinear convective
acceleration effects, with “v” being the azimuthal velocity
function.  N(C) now represents a concentration-dependent
apparent viscosity function, while the pressure gradient P/z
now varies in the z direction in a manner to be discussed.
Note that the equation for “v” is similar to Equation 9-5-1.

The concentration C(x,y,z,t) satisfies the convective
diffusive law in Equation 9-5-2 where  represents an
empirically determined diffusion coefficient that may depend
on flow rate, species or concentration (its transformed
equivalent is shown in Equation 9-5-3 for reference, noting
that the result for “u” takes a similar form).  Note that the
solutions for u, v and C are now nonlinearly coupled transient
partial differential equations of parabolic type.  Laboratory
measurements may be used in one-dimensional experiments to
determine  – then, use of this  in three-dimensional transient
applications may yield important physical insights relating to
the role of annular geometry.

(u/t + v/ru/ + u u/z)  =

= – P/z + N(C) (2u/x2  + 2u/y2 + 2u/z2) + . . . (9-5-1)

C/t + v/rC/ + u C/z =

= -  (2C/x2  + 2C/y2 + 2C/z2)                             (9-5-2)

C/t + q(ξ,η,z) • ∇C =

= ε {Czz + (αCξξ - 2βCξη + γCηη ) /J
2}                    (9-5-3)

Solution strategy.  As in previous work, the differential
operators in the x-y cross-space are re-expressed in curvilinear
coordinates, while “z” remains “as is.”  Central differences are
used for all spatial derivatives and backward differences are
used for time derivatives in an explicit marching scheme.  The
boundary conditions are shown in Figure 9-5-1.  Far upstream
and far downstream, the velocity field is assumed to be
smooth with u/z = 0.  At the left, a “left fluid” is assumed
with a concentration C = 1, while at the right, a second “right
fluid” is taken with C = 0.  The initial condition is shown at
the top of Figure 9-5-1.  At each time step, the spatial
distribution of C is monitored.  The front defined by the locus
of points for which C = 1 travels to the right.  To its left, the
pressure gradient (P/z)left obtained from the model in Fig. 4a

or Fig. 4d is used accordingly as the pipe does not or does
rotate.  Similarly, the pressure gradient (P/z)right is used at
the right of the interface.  In a uniform fluid, the pressure
gradient is constant throughout.  When two contiguous slugs
of fluid move at a flow rate Q, two different pressure gradients
are present, since two different rheologies are present in the
problem.  Note that, because slug lengths are great compared
to annular diameters, only two fluids (satisfying a single
concentration equation) need to be treated at any given
“Zoom3D” application, in contrast to the earlier work reported
by the first author and his colleagues.

Example results.  In the numerical model, we have
allowed variations in borehole annular geometry in the axial
direction.  This is important in practical applications where the
effects of anomalies like localized washouts and cuttings
accumulations on velocities and viscous stresses are to be
studied.  Thus, in order to support three-dimensional
modeling, the cross-sectional mappings are performed as
needed, with transformations Jacobians and other metrics
incorporated into three-dimensional arrays.

Figure 9-5-2.  Uniform eccentric annulus.

Figure 9-5-2 shows the computed concentration field as a
function of time, with the fluid interface propagating to the
right and widening as it moves.  Here, high velocities are seen
at the wide side of the annulus.  The amount of diffusion
clearly differs azimuthally around the pipe.  The annular
region is clearly eccentric, but the borehole cross-section does
not change with axial position.  In Figure 9-5-3, we have a
concentric annulus, however a highly eccentric section is
introduced between the borehole ends in order to demonstrate
three-dimensional effects and computational stability in the
presence of sudden geometric changes.  Figure 9-5-4 displays
typical results from Savery, Tonmukayakul, Chin et al (2008)
which support the approach used in this paper.  Note that
while we have plotted the concentration field as it varies with
time, in order to highlight cement-mud displacement
operations, we could easily have plotted the axial velocity
field using color coded graphics for single-phase flow drilling
applications.  For horizontal drilling, the ability to model local
geometric anomalies, e.g., cuttings beds, washouts, and so on,
supports well stability and hole cleaning planning activities.
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Figure 9-5-3.  Concentric annulus with
embedded eccentric section.

Figure 9-5-4.  Experimental results,
Savery, Tonmukayakul, Chin et al (2008).

User interface.  As noted, e.g., refer to the formulation
outlined in Figure 9-5-1, for general non-Newtonian flows
with pipe rotation, inputs to multiphase calculations include
pressure gradients obtained from the detailed calculations in
Fig. 4a and 4d.  User interface design is complicated by these
auxiliary requirements and the aim is an easy-to-use software
environment that solves this near-field problem as well as the
macroscopic interface tracking automatically.  In order to be
completely transparent to the user, the interface logic must be
capable of detecting slow convergence (or non-convergence)
and correct for this without human intervention.  This is
presently an area of active work.  While important, the task is
straightforward and involves programming only.  For
Newtonian mixtures, the availability of exact scaling laws
automates the computations.  The interface in Figure 9-5-5, for
example, allows introduction of borehole anomalies in the
geometry definition with online editing, and also, provides “on
demand” movie playback of all physical properties in addition
to detailed tabulations.  The menus in Figures 4a, 4d and 9-5-5
are called from a central menu.  The complete system will
integrate all of these software elements.

Figure 9-5-5. Candidate multiphase flow user interface.

More general problems.  An additional, more general,
two-part interface has been developed for non-Newtonian flow
problems with or without rotation.  This is accessed from the
high-level menu of Fig. 9-5-6.  The first menu is shown in the
foreground of Fig. 9-5-7 and accepts inputs related to the
pumping schedule and the fluid rheologies associated with
each pump interval.  For example, two distinct pressure
gradients would be inputted to model the displacement of one
fluid by another.  The second menu is shown in the
background and accepts inputs related to annular geometry
definition and simulaton parameters.

Figure 9-5-6.  High level transient, 3D, multiphase menu.

Figure 9-5-7.  Transient, 3D, two-phase mixture formulation.
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Figure 9-5-8.  Axial velocity (left), apparent viscosity (right),
flow moving downward in each frame, time increases

downward from frame to frame.

Figure 9-5-9.  Apparent viscosity for “constant m” or
azimuthal angle.

Figure 9-5-10.  Axial velocity solution.

Figure 9-5-11.  Azimuthal velocity.

Figure 9-5-12.  Reynolds number, very low, stable flow.
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On completion of the transient, three-dimensional,
multiphase simulation, different types of outputs are available.
For instance, Figure 9-5-8 captures movie frames showing the
timewise evolution of the velocity and apparent viscosity
fields in an azimuthal plane specified by the user.  Movies are
accessed by clicking the “Movie” button in Figure 9-5-7.  The
same menu also provides direct access to numbers, and typical
screens are shown in Figures 9-5-9 to 9-5-12.  Note that the
very low Reynolds numbers shown in the last printout indicate
fluid stability on a single-phase flow basis.  The fluid interface
in the above movie frames is seen to widen gradually as it
convects downward.

Closing Remarks
The present paper describes new capabilities in modeling

steady and transient non-Newtonian flow in highly eccentric
annuli, with or without plug zones associated with yield stress
fluids, with realistic geometric anomalies, plus effects like
borehole axis curvature and drillpipe translation and rotation.
Numerous models were described, together with example
calculations, to show how pressure gradients can be computed
effortlessly using well-posed mathematical formulations
hosted by easy-to-user software interfaces.  These “building
block” capabilities are, of course, by themselves useful.
However, they were created with the more important goal in
mind – that of calculating the time-dependent pressure along
the complete borehole (which includes time-history at the
drillbit) as it would depend on multiple non-Newtonian fluids
pumped into the drillpipe following a general pump schedule.
Here, the intricacies of interface tracking were addressed, and
these time histories were integrated with solutions obtained
separately by evaluating the building blocks previously
discussed.  We also demonstrated how details of the mixing
interface between two long slugs of fluid can be determined
by solving a convective-diffusive equation system.  We also
emphasize that, in all of the models, detailed distributions of
physical properties like axial velocity, rotational velocity,
apparent viscosity, shear rate and viscous stress are available
to the user “on demand.”  These properties may be useful for
correlation purposes and perhaps will aid in understanding a
particular physical phenomenon of curiosity.
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