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can be tested in the laboratory; the latter two are best 
evaluated with rigorous field tests. 

As noted by Cameron et al.,1 experience on world-record 
ERD operations led to the discovery that certain fibrous lost 
circulation materials (LCM) have the ability to enhance hole 
cleaning and dramatically reduce torque and drag in inclined 
and horizontal wellbores. 

Substantiating the above statement, Robertson et al.5 noted 
that the addition of certain LCM had a profound impact on 
torque and drag. Use of some LCM to drill extended reach 
sidetrack wells in Wytch Farm resulted in a significant 
reduction (30-45%) of torque. Reduction in torque is believed 
in many cases to be the result of a combination of better hole 
cleaning and increased lubricity, but limited information is 
available about the optimum quantity of solid additives to use 
and the resulting magnitude of torque reduction. 

Aston et al.6 and Knox et al.7 noted that most solid 
lubricants have the advantage of being compatible with all 
mud chemistries. By contrast, liquid lubricants are often 
limited to certain mud chemistries and narrow pressure/ 
temperature windows. For example, many effective water-
based liquid lubricants contain surfactants and non-aqueous 
fluids (NAF).  The surfactants can act as emulsifiers for the 
NAF and help to transport it to the targeted contact surfaces.  
However, in the presence of some drilling fluids and under 
moderate shear conditions, the combination of NAF, 
surfactant and components in the drilling fluid can produce 
invert emulsions with a consistency of cottage cheese, or they 
can “grease out” on barite weighing agent. High pH and/or 
high-divalent-ion environments (Ca2+, Ma2+) may accelerate 
this process.  Hydrolysis also can occur under those 
conditions.  Not only do these processes deplete the drilling 
fluid of lubricant, but formation of cheese- or grease-like 
products can blind shaker screens and the completion 
assembly and damage production zones. None of the 
compatibility issues that plague liquid lubricants applies to 
solid lubricants, since they generally are chemically inert. 
 
Characterization of Solid Lubricants 

In this study, five candidate solid lubricants were tested. 
The following table shows some physical characteristics of 
these materials: 
 

Table 1: Characterization of solid lubricants 

Solids 
Density Min. 

Dimen. Aspect 
ratio 

Shape Size 
gm/cc mm 

S1 1.27 - - Granular Irregular
S2 1.25 1.66 1.99 Cylindrical Uniform
S3 1.07 0.4 1 Spherical Uniform
S4 1.01 0.2 1 Spherical Uniform
S5 1.14 0.37 - Granular Irregular

 
S1 has a very broad particle size distribution (PSD). S5 

was created from S1 by removing the front and back tails of 

the PSD i.e. the very large and very fine fraction; the result is 
a material with a PSD that ranges from 150-850 µm.  

 
Experiments on Solid Lubricants 

Currently, the industry does not possess a standard method 
or apparatus for testing solid lubricants. Consequently, several 
techniques were developed and employed to evaluate the 
candidate materials.  These included modifications of devices 
available in the industry, prototype lubricity testers, and flow 
loops at Tulsa University Drilling Research Projects 
(TUDRP).  

 
Stickance™ Tester 

The Stickance Tester (Fig.A1 in the Appendix) was built 
by Schlumberger in association with the University of 
Cambridge to measure the differential stickiness of the filter 
cake. This apparatus consists of a test cell, a spherical bob, a 
measuring head and an electronic control data acquisition 
panel. 

The test method was modified to accommodate the 
candidate solid lubricants. Instead of mud cake, a bed of 
lubricant particles was laid in the bottom of the test cell and 
covered with water. Then the bob, made of polished steel and 
fitted with wires, was lowered into the slurry to a fixed depth, 
the bob was rotated at a prescribed rate, and the steady state 
torque was measured. A schematic diagram of the test cell is 
shown in Fig. 2.  

 
Figure 2: Schematic of Stickance Tester test cell.8 

The body of the test cell consists of a double-ended mud 
filtration cell. The top end cap is perforated to allow entry of a 
steel wire. The end of the wire in the cell is fixed to the 
spherical bob; the end of the wire protruding out of the cell is 
connected to the electronic torque gauge. The simple design of 
the frame allows all the components to be supported and 
positioned precisely.8 All tests were performed at atmospheric 
pressure and temperature.  

Experiments were conducted with S1, S2, S3 and S4 for a 
period of 15 min each. The measured torque is the force 
required to rotate the bob when in contact with the solids. 
From the results shown in Fig. 3 it is clear that the magnitude 
of the measured torque varies from one lubricant to another. 
The plastic beads (S2, S3 and S4) yielded lower torque than 
the granular materials (S1), and it appears that the spherical 
beads (S3 and S4) perform a little better than the cylinders 
(S2).  
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where µlubricant = coefficient of friction with the candidate 
lubricant in the base fluid, and µbase = coefficient of friction 
with the neat base fluid. 

In Equation (3), if the value of % Lubricity is positive, it 
implies that there is a decrease in µ as compared to the neat 
base fluid (no lubricants) and vice-versa. Table 2 in the 
Appendix gives the % Lubricity for different solid lubricants 
at different SIFL test conditions.  As before, S3 and S4 were 
far superior to S2 and S5.  However, for these tests, S3 and S4 
provided similar, though high, levels of lubricity (as in the 
StickanceTM tests), and S2 and S5 were both very poor and in 
most cases decreased the lubricity bestowed by the base fluid 
alone. 
 
Conclusions and Recommendations 
1. Several test methods have been developed which 

demonstrate reduced torque and drag of proven solid 
lubricants for drilling fluids and permit differentiation of 
their performance. 

2. Shape and size of solid additives play important roles in 
their performance as drilling fluid lubricants. 

3. In the tests performed in this work, uniform spherical 
beads, provided greater reduction in torque and drag than 
cylindrical beads, which perform better than granular 
material.  

4. In the DLT and TLT, beads measuring 0.4 mm in 
diameter performed better than beads measuring 0.2 mm 
in diameter, but in the Stickance Tester and the SIFL 
there was little difference in performance. 

5. Each candidate solid lubricant showed different 
dependencies on experimental variables, a result 
attributable to the different physical characteristics of 
each type of lubricant. 

6. Further study of shape and size and other physical 
properties, as well as mechanical properties, is 
recommended to improve our understanding and optimize 
the design of solid lubricants.  
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Nomenclature 

a = Acceleration of the object, m/s2 

g = Gravitational Constant, 9.81 m/s2 

M = Torque, ft-lb 

m1 = Mass of object 1, g 

m2 = Mass of object 2, g 

N = Normal Force, lb 

wg = Weight of gravel +  buckets, lbm 

wp = Weight of inner pipe, lbm 

μ = Coefficient of friction (COF) 
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Appendix
 
 

 
Figure A1: Stickance Tester. 

 

 
Figure A2: Free body diagram showing various forces acting on 

the blocks of DLT. 

 

 
Figure A3: Free body diagram showing various forces acting on 

the inner pipe of TLT.9, 13 

 

 
Figure A4: Small Indoor Flow Loop (SIFL). 

 

Table A1: Test matrix for SIFL 
using Taguchi method for three 

levels and three variables 

Test Flowrate 
gal/min 

RPM 
min-1 

% 
Solids 

1 10 20 1 
2 10 40 3
3 10 80 6
4 15 20 3 
5 15 40 6 
6 15 80 1
7 20 20 6
8 20 40 1
9 20 80 3 

 
 

Table A2: Lubricity provided by solid 
additives in SIFL tests under various 

test conditions 

Test 
No. 

% Lubricity 
S2 S3 S4 S5 

1 -23.8 -8.9 -1.1 26.5 
2 3.9 35.5 37.1 -24.9 
3 31.5 54.7 57.7 32.6 
4 -32.0 14.9 8.1 -61.7 
5 -33.5 31.1 27.7 53.8 
6 -88.8 52.0 45.8 -17.5 
7 -32.1 29.0 59.0 55.5 
8 -20.6 20.5    16.2   -47.2 
9 -79.7 64.8 65.8 -34.2 

 


