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Abstract 

The paper presents a new computational fluid dynamics 
(CFD) simulator that models multiple aspects of mud 
displacement during cementing.  In 2001, Crook et al. 
published an article1 describing the “eight steps” to ensure 
successful cement jobs.  The top five steps relate directly to 
the success of cement slurry placement, and never before has a 
simulator been able to model all five together.  The present 
simulator dynamically models, in three dimensions (3-D), the 
intermixing of wellbore fluids in both pipe and annuli with 
casing movement during hole cleaning and cement slurry 
placement.   

The real value simulation brings is that the user can 
‘practice’ with the simulator before going to the rig site.  Life 
does not occur in two dimensions, and this 3-D simulator can 
help operators and engineers make better decisions to avoid 
cement job failure, improve well integrity, and control rig time 
cost associated with squeeze workovers.  Its interactive 3-D 
visualizer allows the user to screen various scenarios and helps 
create the best design on the first try, to avoid costly remedial 
work later. 
 
Introduction 

In completion of oil and gas wells, cementing operations 
are employed to provide zonal isolation.  Perhaps the most 
important factor engineers and operators should consider for 
successful cementing is adequate drilling fluid removal.   
Efficient mud displacement is perhaps the most important 
factor in helping ensure a successful cement job.  To help 
optimize mud removal, the primary technique used is to pump 
a spacer fluid with modified rheology that creates a favorable 
fluid-fluid interface to enhance mud displacement.  In many 
instances, it is highly desirable to monitor how this interface 
evolves over time.  Fluid intermingling may inhibit the 
capability of a fluid to perform its intended purpose, for 
example, intermixing of spacer fluid with cement slurry may 
lead to contamination of the cement.  This contamination may 
cause an undesirable failure of the setting of the cement and, 
consequently, a significant increase in cost due to increased 
wait time or remedial repair.  

Several other factors that directly impact mud 
displacement are wellbore geometry, mud conditioning, casing 
movement via reciprocation and rotation, casing 
centralization, and optimizing the pump rate.2  However, often 
unknown is the extent to which these variables affect mud 

displacement, especially when applied in combination with 
one another.  Even a relatively straightforward cementing 
operation can quickly become a challenging scenario with 
multiple variables.  The industry has conducted numerous 
large-scale physical studies3-8 over the last half-century to 
empirically evaluate the importance of these factors on 
displacement efficiency. 

More recently, however, several studies have taken 
advantage of computational numerical methods to describe the 
different aspects of the mud displacement process in annular 
geometries.  Tehrani et al.9 discussed combined theoretical 
and experimental studies of laminar displacement in inclined 
eccentric annuli by appropriately coupling the momentum 
equation with the concentration equation suggested earlier by 
Landau and Lifshitz.10  Cui and Liu11 addressed helical flow in 
eccentric annuli based on the bipolar coordinate system.  
Pelipenko and Frigaard12 examined fluid-fluid displacement in 
a two-dimensional “narrow annuli” without casing 
reciprocation or rotation.  The well known model discussed by 
Escudier et al13,14 considered non-Newtonian viscous helical 
flow in eccentric annuli for a single fluid.  Dutra et al.15 
analyzed the interface between adjacent fluids through three-
dimensional annular eccentric tubes using a commercial 
computational fluid dynamics (CFD) package.  Finally, Li and 
Novotny16 proposed a Lattice-Boltzmann approach based on 
single fluid flow between two parallel plates to describe 
cement displacement behavior. 

While a significant amount of noteworthy work has been 
done in the past, the current authors’ attempt to build a 
comprehensive CFD model that accounts for all physical 
parameters known to affect displacement phenomena, namely 
pump-rate adjustments, fluid-fluid intermixing and diffusion, 
casing standoff, abnormal wellbore geometries, fluid rheology, 
wellbore deviation, casing reciprocation, and  casing rotation.  
Therefore, a three-dimensional simulator capable of modeling 
these scenarios has been developed.  The computational 
system is formulated on a general curvilinear coordinate 
system whose boundaries can conform to irregular boreholes 
such as those with washouts.  Unlike existing models limited 
to weakly eccentric annuli without casing movement, the 
present simulator handles multiple real-world effects and 
efficiently performs trade-off studies that can enable more 
economical and effective cementing jobs while helping ensure 
the longevity of the well. 
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Theory 
We consider the transient and eventual steady-state flow of 

the miscible mixing of Newtonian or non-Newtonian fluids in 
general eccentric annular borehole geometry with localized 
washouts possible along the axial direction.  The numerical 
solution to our formulation predicts important operational 
properties such as mixing zone thickness, location and time 
scales, evolving velocity, viscosity and density spatial 
distributions, and so on, as functions of geometry, fluid 
rheology, initial conditions, and casing reciprocation and 
rotation.  The mathematical approach is best described 
conceptually starting from simpler illustrative flow limits.     
 
Baseline Equations 

The general non-Newtonian rheological equations for 
unsteady single-phase fluid flow of constant density ρ with 
and without yield stress are given by  
 
ρ (∂vr /∂t + vr ∂vr /∂r + vθ  /r ∂vr /∂θ  – vθ

2/r + vz ∂vr /∂z) =  
= Fr – ∂p/∂r + 1/r ∂(r Srr)/∂r + 1/r ∂Srθ /∂θ – 1/r Sθθ + ∂Srz/∂z   (1)   
 
ρ (∂vθ  /∂t + vr ∂vθ  /∂r + vθ  /r ∂vθ  /∂θ  + vrvθ /r + vz ∂vθ /∂z) =  
= Fθ – 1/r ∂p/∂θ + 1/r2 ∂(r2

 Sθr)/∂r + 1/r ∂Sθθ /∂θ + ∂Sθz/∂z       (2)   
 
ρ (∂vz /∂t + vr ∂vz /∂r + vθ /r ∂vz /∂θ  + vz ∂vz /∂z) =  
= Fz – ∂p/∂z + 1/r ∂(r Szr)/∂r + 1/r ∂Szθ /∂θ + ∂Szz /∂z           (3)   
 
∂vr /∂r + vr /r + 1/r ∂vθ /∂θ + ∂vz /∂z = 0                                    (4)   
 
where vr, vθ and vz are radial, azimuthal, and axial velocity 
components in a cylindrical radial coordinate system, p is 
pressure, Fr, Fθ and Fz are body forces, noting that S = 2 N(Γ) 

D denotes the deviatoric stress tensor, with N(Γ) being the 
apparent viscosity function and Γ the shear rate.  Here, D is 
the deformation tensor in cylindrical radial coordinates. 

Equations 1-4 are four nonlinearly coupled transient partial 
differential equations in the four unknowns vr, vθ, vz and p.  
The first three represent momentum equations and the fourth 
the continuity equation.  To obtain practical solutions, 
simplifications must be made that are consistent with actual 
borehole flow applications.  In most problems, the radial 
velocity is much smaller than both axial and azimuthal 
velocities, and so, the radial momentum equation can be 
ignored.  We also ignore the azimuthal pressure gradient in the 
tangential momentum equation because this induced effect is 
small relative to the dragging motion associated with casing 
rotation.  This leaves Equations 2 and 3 as coupled governing 
equations driven by a (time and space varying) axial pressure 
gradient ∂p/∂z.  Auxiliary conditions are required to complete 
the formulation.  For example, as initial conditions, one might 
have quiescent flow when starting from rest, but here, we 
consider uniform velocities in the case of quasi-steady flows 
due to positive displacement pumps.  No-slip velocity 
boundary conditions apply at all solid surfaces, e.g., zero 
velocities at borehole walls and prescribed rotation and axial 
reciprocation motions at the casing surface.  In general, the 

equations are integrated by a finite difference time-marching 
scheme. 
 
Curvilinear Coordinates 

The foregoing equations are written in cylindrical radial 
coordinates; however, this does not imply that only concentric 
problems can be solved.  Any geometry can, in principle, be 
modeled.  The initial baseline polar formulation is chosen 
because it allows rotation rate boundary conditions to be 
conveniently expressed at the circular casing surface.  But 
concurrently, we do not require the borehole contour to take 
the form of a concentric circle; it may be eccentric and contain 
large washout or fracture modifications or any geometric 
perturbations as determined from caliper logs.  To 
accommodate this geometric flexibility, the above governing 
equations are next transformed from (r,θ,z) coordinates to 
Cartesian (x,y,z) variables using standard polar coordinate 
transforms.  They are then further re-expressed in general 
boundary-conforming curvilinear coordinates (ξ,η,z) using the 
x(ξ,η,z) and y(ξ,η,z) numerical mapping procedure developed 
in Chin.17  The latter method transforms any doubly connected 
region into a simple rectangular domain for computational 
convenience to provide improved physical resolution in tight 
spaces as needed.  For illustrative purposes, Fig. 1 shows a 
borehole with a Texas-shaped boundary and an internal 
fracture slit which is mapped into the actual grid.  Using this 
method, it is possible to represent any borehole shape 
containing, for example, washouts or localized fractures. 
 
Miscible Flow Extension 

The transformed equations thus far apply to single-phase 
fluids only.  To extend the formulation to two-phase flow for 
miscible mixing applications, we now require an additional 
dependent variable, namely, the fluid concentration function 
C(ξ,η,z,t).  This physical quantity satisfies a transformed 
convective-diffusive partial differential equation of the form  
 
∂C /∂t + q (ξ,η,z) • ∇C = ε {Czz + (αCξξ - 2βCξη + γCηη ) /J2

 }   (5) 
 
where the transport velocity q (ξ,η,z) contains both axial and 
azimuthal components needed to establish helical flow and ε is 
a diffusion coefficient.  Note that this diffusion equation does 
not explicitly contain transport parameters like viscosity, but 
that such effects appear indirectly through the vector velocity 
q satisfying Equations 1-4.  Various coefficients in the 
foregoing fluid description must also be extended to handle its 
additional degrees of freedom.  For example, the previously 
constant fluid density ρ may now take the variable form ρ = 
Cρ1 + (1-C) ρ2 so that ρ = ρ1 when C = 1 and ρ = ρ2 when C = 
0 where “1” and “2” might individually represent mud, spacer 
fluid, or cement slurry.  The stress tensor S = 2 N(Γ) D used in 
single-phase fluid must be similarly modified.  For example, 
the constant viscosity μ in the Newtonian limit is replaced by 
an empirically determined function μ(C) guided by laboratory 
experiments – this function would, of course, satisfy the limits 
μ = μ1 when C = 1 and μ = μ2 when C = 0.  For Herschel-
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Bulkley fluids, similar comments would apply to the constants 
n, K and τyield.  Example mixing functions determined in the 
laboratory for typical fluid combinations and used in the 
present simulations are shown in Fig. 2 as surface plots that 
depend on concentration and shear rate.  This miscible flow 
extension of the conventional single-phase formulation was 
first given conceptually by Landau and Lifshitz.10  It is 
implemented here for three-dimensional annular flows within 
the curvilinear coordinate framework.  Because the structure 
of the transformed stress terms is extremely complicated, the 
transient integration method used is explicit in time.  In the 
quasi-steady examples presented here, the total volume flow 
rate is specified for the problem; in this limit, the pressure 
gradient used in the axial momentum equation is 
approximately the one obtained on a steady two-dimensional 
basis. 
 
Simulator Capabilities 
To assess the capabilities of the simulator, a series of 
demonstrations is presented here:  
 

1. Eccentric annular flow 
2. Mixing zone thickness and channel length 
3. Casing rotation 

 
The same baseline inputs are used in each simulation: 
 

Borehole Diameter   = 6.5 in. (16.5 cm) 
Casing Diameter   = 4.5 in. (11.4 cm) 
Length/Depth   = 400 ft (122 m) 
Pump Rate    = 2 bbl/min (0.32 m3/min) 
App. Visc. Displaced Fluid = 20-cP 
App. Visc. Displacing Fluid  = 30-cP 
Density Displaced Fluid  = 10-lb/gal (SG = 1.2) 
Density Displacing Fluid  = 11.7-lb/gal  (SG = 1.4) 

 
Fig. 3 shows the baseline 2-D radii grid and Fig. 4 shows the 
baseline 3-D wellbore grid.  Other input parameters such as 
standoff percentage, the diffusion coefficient, and casing 
movement speeds were modified depending on the study 
performed.  Simulations were conducted in vertical annuli 
only.  For all demonstrations, the fluid being displaced (e.g. 
mud) is characterized by the color blue and the displacing 
fluid (e.g., spacer or cement) is characterized by the color red.  
The legend representing the degree of mixing between the two 
fluids is designated by Fig. 5.  Note that on many of the 
subsequent figures, a dark orange color is used to describe a 
displacing fluid concentration of 97%.  This is an arbitrary 
value for visual description only; any other concentration 
value may be selected according to the user’s preference.   
 
Eccentric Annular Flow 

Fluid flow in a wellbore annuli is rarely, if ever, an exactly 
concentric situation (i.e., a perfectly circular casing string set 
exactly centered in a perfectly circular borehole).  In reality, 
the casing or liner is often offset closer to one side of the 

borehole, leaving an eccentric annulus with a distinct wide 
side and narrow side.  In addition, the borehole itself may be 
oval-shaped or have extreme variances in geometry due to 
washout sections.  It is often difficult to predict the top-of-
cement (TOC) with these variations, so one of the benefits of 
the simulator is its capability to estimate TOC whatever 
geometry may be.  This estimation becomes increasingly 
important when the casing or liner is offset and fluid flow is 
slower up the narrow annular side, leaving a long, uncemented 
section.  If this occurs, remedial squeeze cementing may be 
required.   

The theory behind the simulator code is designed to 
account for abnormal geometric variations, and two such cases 
will be presented here.  First, a series involving one fluid 
displacing another fluid in varying degrees of eccentric annuli 
is described. To describe the effect of offset casing, three 
simulations were run:  The first at a typical standoff of 70% 
(Fig. 6), the second at a poor standoff of 40% (Fig. 7), and the 
third at a drastic standoff of 10% (Fig. 8), which may occur in 
a highly deviated well.  As expected, Figs. 6-8 show the 
varying response of annular flow as a function of offset 
casing.  Both the 70% case and 40% case clearly show flow on 
both the wide side and narrow side of the annulus (albeit to a 
lesser degree for the 40% case), but the extreme case of 10% 
shows little-to-no flow on the narrow side.  In addition, Fig. 9 
shows the discrepancy in velocity profiles between the narrow 
side (represented by the red line) and wide side (represented 
by the blue line) in the 70% standoff case.  These 
demonstrations stress the need of casing centralization.  
Without it, flow on the wide side will dominate, leaving 
uncemented regions on the narrow side.  With an eccentric 
annulus, there is never a guarantee that cement returns at 
surface means complete coverage around the casing.  The 
ability to predict cement slurry location in 3-D space is 
invaluable, especially in situations when the casing is expected 
to be decentralized.   
 
Mixing Zone Thickness and Channel Length 

During any given cement job, various fluids are pumped 
down the casing string and subsequently up the annular gap.  
Each liquid has its own function; for instance, a spacer fluid is 
used to separate the cement slurry and existing mud.  It also 
acts as an inner-casing cleaner and annular cleaner.  Rubber or 
foam wiper plugs are also often deployed to wipe the inner 
casing.  Ideally, the cement slurry remains completely 
uncontaminated until placed at the desired location.  However, 
in real applications, the spacer fluid gets “used up,” or mixed 
in with the cement, mud, or usually both.  Sometimes the 
spacer is used up before it ever turns the corner!  In addition, a 
wiper plug often wears down before ever reaching the bottom, 
causing the fluids to mingle.   Fluid-fluid intermixing often 
becomes a problem because it can leave cement strings in the 
casing or mud channels in the annulus, both of which are 
highly undesired.  Thus, if the spacer fluid or wiper plug does 
a poor job of displacement, remedial work and extended rig 
time may be necessary, which increases both labor and 
material costs. 
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Understanding how the mixing interface evolves over time 
is of critical importance.  The numerical algorithm presented 
here can predict the extent of contamination and intermixing 
over time, which 1) can help pinpoint potential causes of 
stringing or channeling and 2) can provide insight into 
reducing material cost (e.g., optimizing spacer and excess 
cement amounts). Over the course of displacement, the 
distribution of concentration at mixing interfaces may change 
one of two ways.  The first is mechanical mixing (convection) 
and the second is molecular transfer (diffusion).  Recall 
Equation 5, the coupled convective-diffusive differential 
equation.  In real-world cement jobs, there are typically two 
types of wellbore fluids encountered:  Water-based and oil-
based.  In general, oil-based fluids are immiscible with water-
based fluids, thus the convective term is likely to dominate.  
Conversely, water-based fluids are miscible with other water-
based fluids.  In this case, the diffusion term likely will have a 
greater impact.   

Therefore, to understand the full range of fluids 
encountered, simulations varying the diffusion coefficient 
were conducted in a concentric annulus.  The diffusion 
coefficients suggested here are arbitrary for illustrative 
purposes. Precise diffusion coefficients may be found 
experimentally, perhaps in a simple, straight tube where the 
displacement and thickness of the frontal interface are 
measured in space and time.  Figs. 10-12 show that varying 
the diffusion coefficient has a dramatic impact on the 
intermixing profile.  Fig. 10 shows the one extreme—perhaps 
when a water-based spacer fluid displaces a water-based 
mud—where the diffusion coefficient is high (3x10-2 in.2/sec) 
and diffusion forces dominate as observed by stable, flat, 
mixing interface.  Conversely, Fig. 12 describes the other 
extreme–perhaps when a water-based spacer fluid displaces an 
oil-based mud–where the diffusion coefficient is four orders-
of-magnitude lower (3x10-6 in.2/sec) and intermixing is driven 
by mechanical-convective forces.   
 
Casing Rotation 

Rotating the inner casing during cement placement results 
in more successful primary cement jobs and reduces the 
probability of remedial work such as zonal isolation squeezes 
and liner top squeezes.18  The present study provides a proof-
of-concept visualization of rotational effects.  Fig. 13 shows a 
steady-state velocity profile from a 2-D slice of a 70% 
standoff situation with casing rotation of 20 RPM.  The 
maximum velocity point shifts to form an asymmetric profile 
around the eccentric annulus.  This should be expected 
because the fastest fluid takes the path of least resistance on 
the wide side but now also has an azimuthal component added 
to its velocity due to the rotating casing.  Fig. 14 shows the 
same simulation but in 3-D.  There is no longer just axial 
velocity, but rather azimuthal velocity is added via the 
mechanical movement of the casing.  A streamline following 
the center (i.e., tip) of the parabolic velocity profile has been 
added to illustrate this induced helical flow.  From this, a 
useful observation emerges to confirm the merits of rotating 
the casing:  Rotation helps offset the drastic variations in wide 

side versus narrow side flow in eccentric annuli.  This has 
been observed in field operations for years and now can be 
confirmed with CFD.  With this tool, the helical flow pitch 
and intermixing phenomena during rotation may be predicted.  
This can help the cement job designer evaluate the impact of 
rotating the casing during displacement and make a more 
accurate assessment of where the top-of-cement will be. 
 
Conclusions 

The proprietary three-dimensional simulator and 
interactive 3-D visualizer (Fig. 14) provide foundational tools 
to model multiple aspects of mud displacement, including key 
factors such as eccentric annuli, fluid-fluid mixing, and casing 
movement.  These tools, we hope, can enable more 
economical and more successful cementing jobs, as well as 
promote efficiencies in pre-job design and post-job analysis.  
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Nomenclature 
(ξ,η,z) = curvilinear coordinate system 
α = mapping function 
β = mapping function 
ε = diffusion coefficient 
γ = mapping function 
μ = viscosity 
ρ = density 
τyield = Hershel-Bulkley coefficient 
C = concentration 
D = deformation stress tensor 
Fr = radial body force 
Fθ = azimuthal body force 
Fz = axial body force 
J = mapping function 
K = Hershel-Bulkley coefficient 
n = Hershel-Bulkley coefficient 
N(Γ) = apparent viscosity function 
p = pressure 
q = transport velocity 
RPM = revolutions per minute 
S = deviatoric stress tensor 
t = time 
vr = radial velocity 
vθ = azimuthal velocity 
vz = axial velocity 
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Fig. 1—Example of physical domain in boundary-conforming 
curvilinear coordinates. 
 

 
Fig. 2—Example mixing viscosity function where x is percent mud 
in mixture and y is apparent viscosity of mixture as determined in 
the laboratory over a range of fluid combinations. 

 
 

 
Fig. 3—Baseline 2-D radii grid. 
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Fig. 4—Baseline 3-D wellbore grid. 
 
 

 
Fig. 5—Mixture legend where C represents the displacing fluid 
concentration. 

 
 

 
Fig. 6—Concentration profile for 70% casing standoff.  

 
 

 
Fig. 7—Concentration profile for 40% casing standoff.  
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Fig. 8—Concentration profile for 10% casing standoff. 
 

 

 
Fig. 9—Velocity profile variances in an eccentric annulus. 
 

 

 
Fig. 10—Concentration profile for D = 3x10-2 in.2/sec.  
 

 

 
Fig. 11—Concentration profile for D = 3x10-4 in.2/sec.  
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Fig. 12—Concentration profile for D = 3x10-6 in.2/sec.  
  

 

 
Fig. 13—2-D steady-state velocity profile with inner-casing 
rotation of 20 RPM in a 70% standoff scenario. 
 

 

 
Fig. 14—Interactive 3-D visualizer.  
 
 
 

 
 


