

Early Field Trials of MotarySteerableTM Performance Drilling Tool

Chris Maranuk Weatherford International 22-Mar-2011

Agenda

- Targeted Bit Speed (TBS) Theory
- System Specification
- Early Field Trials
- Conclusions

Drilling

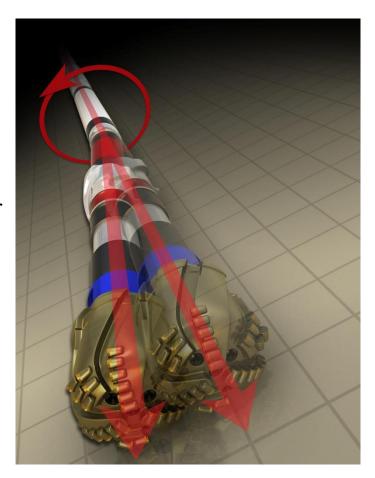
Evaluation

Completion

Production

Intervention

Targeted Bit Speed (TBS) Theory



General Theory - SPE 139925

(Controlling Well Path Trajectory with Rate of Penetration Modulation)

- A bent housing down hole motor works off of two different drilling centerlines
 - Rotational
 - Oriented
- During continuous string rotation, different bend orientations will drill the well bore at different times
- Controlled modulation of bit speed through the motor should cause the well path to move.
 - Higher RPM & ROP toward target
 - Lower RPM & ROP away from target

Why is This Important?

- Can use conventional mud motors and MWD tools to provide continuous rotation with full 3-D directional control
- If desired build rates are not obtainable, can always stop and orient using conventional directional drilling methodology – very low risk technology
- Lost-in-hole cost is substantially less than traditional motorized rotary steerable systems
- Have opportunity to increase ROP and hole quality by sliding less using TBS technology
- Use legacy technology (mud motors and MWD) with proven reliability to increase their functionality, utility and applications

Completion

System Specifications

Specifications

Teol Size (iii)	4-3/4	6-1/2	6-3/4	8-1/4	
HyperLine 250 Flower Section (lobe, stage)	7:8	7:8	7:8	7:8	
	5.0	3.0	5.0	4.0	
Capable hole diameter (in./mm)	5.875 to 6.750	7.875	8.500 to 9.875	10.625 to 12.250	
	149 to 172	200	216 to 251	270 to 311	
Maximum rotary dogleg severity (DLS) (°/100 ft or °/30 m)	3.0°	3.0° 2.0°		1.5°	
Tool length (ft/m)	03.94	64.50	64.99	65.42	
	19.49	19.66	19.81	19.94	
Top connection	3-1/2 API IF Box	4-1/2 API IF Box		5-1/2 API IF Bex	
Bottom connection	3-1/2 API Reg Box	4-1/2 AP	l Reg Box	5-1/2 API Reg Box	
Minimum vertical kickoff angle			D°		
Flow rate range (gpm/Lpm)	150 to 300	200 to 600	300 to 690	300 to 900	
	568 to 1,136	757 to 2,271	1,136 to 2,271	1,136 to 3,407	
Bit speed range (rpm)	50 to 335	40 to 160	45 to 240	300 to 1,000	
Maximum torque output (ft-lb/N•m)	5,620	6,810	12,780	18,320	
	7, 6 22	9,234	<i>17,330</i>	24,842	
Maximum power output (hp/kW)	800	175	370	490	
	22 <i>4</i>	131	276	365	
Maximum differential pressure (psi/kPa)	1,200	600	1,200	1,000	
	8,2X 4	4,137	8,274	6,895	
Maximum body overpull (static load) (lb _F /daN)	185,000	288,000	387,000	444,000	
	82,000	128,000	171,000	197,500	
Maximum bit overpull (static load) (lb _F /daN)	51,000	81,990	95,000	112,000	
	23,000	36,000	42,000	<i>4</i> 9, <i>800</i>	
Maximum operating temperature (°F/°C) *			56° 80°		
Maximum operating pressure (psi/kPa)	30,000 25,000 206,843 172,369				
Maximum sand content	2%				

Considerations

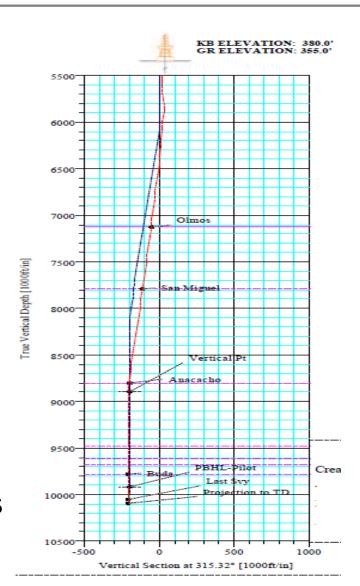
- Technology only as good as the individual pieces
 - Mud motors
 - MWD tools
 - Bits
 - Stabilization
- Best performance comes with a neutral BHA using compliant bits
- Low build up rate (BUR) assist
 - Smaller the bit size the greater the effect
 - Excellent low angle tool face control
 - Can always stop and orient to get higher BUR's

Intervention

Early Field Trials

Eagle Ford Shale

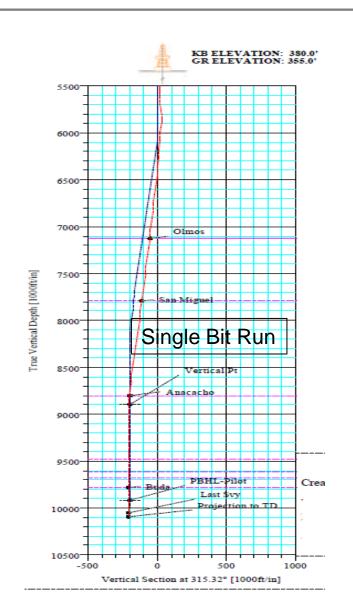
Field Trials


						Start	End				
				Start		Depth	Depth	Ft			
Job	State	County	Field	Date	End Date	(MD)	(MD)	Drilled	Mud Type	Well Type	Comments
1	ОК	Rogers	Catoosa	1-Sep-08	5-Sep-08	240	1471	1231	WBM	S-Type w/ Tangent	Up Down Control Only (w/ EM)
2	ОК	Rogers	Catoosa	1-Dec-08	5-Dec-08	185	1600	1415	WBM	crap	Went Terrible/No Control, Black Box
3	ОК	Rogers	Catoosa	12-Jan-09	29-Jan-09	210	1716	1506	WBM	S-Type w/ Tangent	Lots of Rig Issues, Shock Sub, IDS failure, 2 weeks
4	ОК	Rogers	Catoosa	11-May-09	15-May-09	200	1785	1585	WBM	S-Type w/ Tangent	5 BHA's, Reasonable control w/ some
5	TX	Tarrant	Barnett	20-Jul-09	30-Jul-09	1200	13505	12305	WBM	Turn-a-zontal	Held low tangent in upper, lots of tool problems
6	ОК	Rogers	Catoosa	30-Sep-09	6-Oct-09	630	1768	1138	WBM	S-Type w/ Tangent	Pulse Patterns, Vary Bends & Bits
7	UT	Uintah	Uintah Basin	10-Dec-09	20-Dec-09	2800	9470	6670	WBM	S-Type	Good performance in vertical
8	UT	Uintah	Uintah Basin	2-Feb-10	6-Feb-10	1815	8360	6545	WBM	S-Type	Good performance in vertical
9	TX	La Salle	Eagle Ford	21-Apr-10	24-Apr-10	3691	8100	4409	Invermul	Vert Ctl w/ low angle tangent	100% run;
10	TX	Webb	Eagle Ford	2-May-10	6-May-10	4705	10066	5361	Invermul	Vert Ctl	Back to back MM failures
11	TX	La Salle	Eagle Ford	8-Jul-10	14-Jul-10	3440	10100	6660	Invermul	Vert Ctl w/ low angle tangent	100% run; 4% slide/96% PDS; good perf in vertical
12	PA	Greene	Greene County	12-Aug-10	25-Aug-10	2662	9441	6779	WBM	Vert Ctl w/low angle tang, build to horiz	First 2 runs had junk in the hole.
13	ОК	Pittsburg	Kiowa	4-Sep-10	2-Dec-10	725	16165	15440	WBM & OBM	Verical Control, build to horizontal	High dip; multiple BR's; 90 day well
14	LA	DeSoto	Brushy Bayou	7-Dec-10	17-Dec-10	106	8477	8371	WBM	Tangent and then vertical	MWD failure; good control in vertical
15	LA	DeSoto	Oxford	9-Jan-11	20-Jan-11	106	8628	8522	WBM	Tangent and then vertical	100% run; 5% slide/95% PDS; good perf in vert/tang
16	TX	Tarrant	Barnett	25-Jan-11	6-Feb-11	1291	14662	13371	ОВМ	Vertical Control and Lateral	Assisted in tangent, reduced sliding time by 67% in late

- Have tested the system in 6", 7-7/8", 8-1/2", 8-3/4", 9-7/8", and 12-1/4" holes
- Run in low angle tangent, vertical control, horizontal lateral sections
- Tested in OK, UT, TX, and PA
- Highlights include:
 - Delivered tight azimuth control for 2,500' in a 3° tangent section
 - Successfully drilled 5,500' with vertical control maintaining under 1° inclination
 - Substantially increased ROP by being able to maintain optimal drilling parameters, eliminating sliding requirements

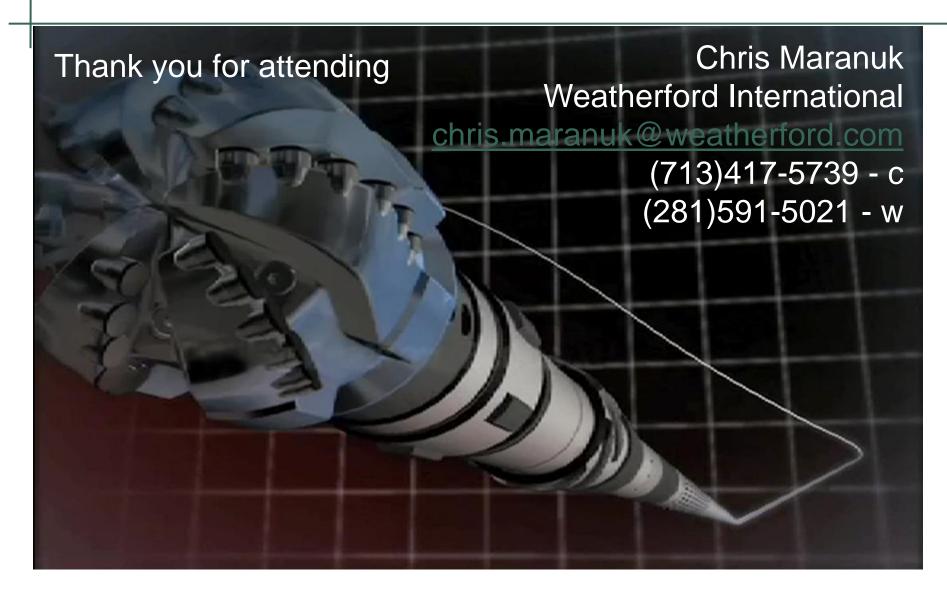
Eagle Ford Shale Wells - Background

- Eagle Ford Shale
- Vertical hole with a slight negative section
- 9-7/8" hole
- Oil based mud
- Drilled 3 wells with same well plan
- All 3 wells drilled with good vertical control, build and tangent hold
- Drilled ~16,000 between the 3 wells


Results – Wells 1 and 2

Run No.	Hole Section	Footage Drilled	Hours Drilled	Avg ROP (Ft/hr)	Comments
Well 1					
1	Pilot hole	4,409	28.74	153.00	Used for vertical control, build, hold and drop back to vertical
Well 2					
1	Pilot hole	3,894	37.43	104.03	Good directional control and hold tendencies throughout but run – POOH to check mud motor
2	Pilot hole	1,467	18.48	79.00	Good directional control and hold tendencies to TD

Results – Well 3


Well 3	
Hole Section	Pilot hole
Footage Drilled	6,660
Hours Drilled	72.58
Avg ROP (ft/hr)	91.79
Comments	 ✓ Drilled pilot hole in 1 run ✓ Only two short slides during entire bit run ✓ Excellent low angle tool face control ✓ 96% rotating time; only 4% sliding

Conclusions

- TBS methodology can provide good 3-D directional control of up to 3 degrees per 100 feet
- Always have the option stop and orient to increase build rates
 - Oriented BUR's comparable to conventional mud motor tool
- Rotating BUR's vary on tool size
 - The smaller the tool the larger the impact
- System capitalizes on two proven technologies
 - Mud motors
 - MWD
- Hole sizes range from 6 inch to 12-1/4 inches, including 7-7/8 inch hole size
- LIH can be significantly less than traditional 3-D rotary steerable assemblies

