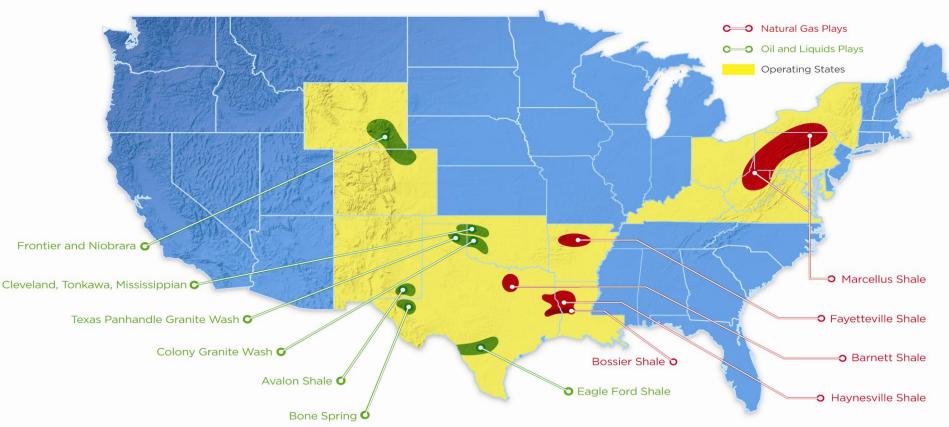


Chesapeake Energy Eagle Ford Shale Overview

AADE Operator's Forum Oklahoma City Chapter January 19, 2011

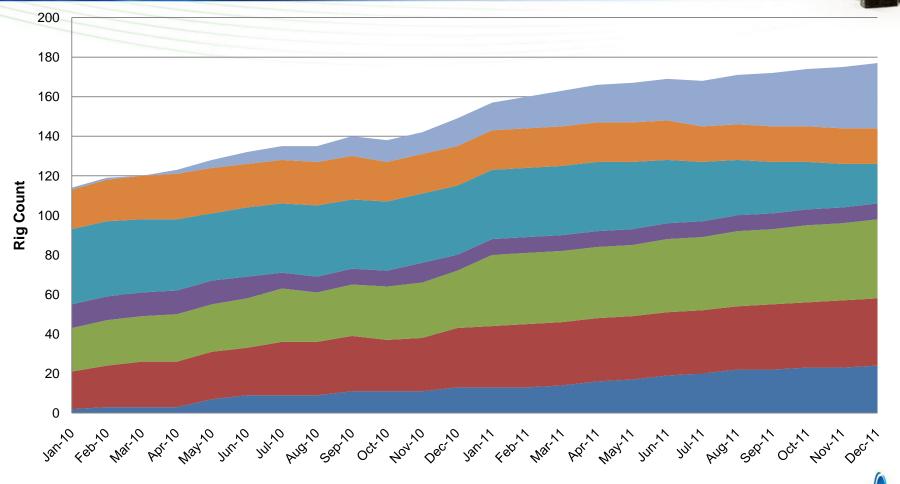
Jason Stidham
Senior Drilling Engineer
South Texas District


Chesapeake - Overview

- One of the largest producers of U.S. natural gas
 - 2010 EOY ~2.6 bcfpd
- Committed to increasing liquids production
 - 59.5 MBPD oil and NGLs 100% more than EOY 2009!
- Most active driller in U.S. CHK collects 20% of all daily drilling information generated (25% in areas of interest).
 - 155 operated rigs currently, down from peak of 158 in August 2008
 - 175 operated rigs by EOY 2011 and 200 operated rigs by EOY 2012
- Consistent production growth 21 consecutive years of sequential production growth
 - Realized a 14% increase in 2010 over 2009
- Best assets in the industry
 - 16.9 tcfe of proved reserves EOY 2010
 - Added 4.8 tcfe of proved reserves through the drillbit in 2010

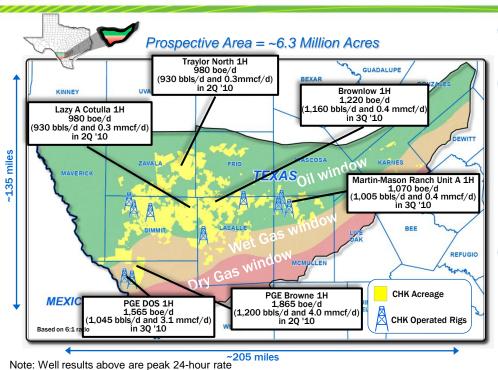
Chesapeake-Operating Areas

Big Oil on the Way to CHK



- Started transition in early 2008
 - Announced discovery of Colony Granite Wash play
 - Disclosed new unconventional oil plays
- Quietly built leasehold positions in unconventional plays that would benefit from advances in drilling and completion technologies
 - CHK has many unique advantages vs. competitors
- 2008-2010: confirmed play concepts work
- Now have ~1.9 mm net acres in 12 plays with ~2.0 bboe of risked unproved resources and 6.8 bboe unrisked unproved resources
- Projecting liquid production mix to increase from 10% in 1Q'10 to 15-20% by YE 2012
- Targeting >100,000 bbls/d of oil and natural gas liquids production by YE 2012
- Continuing to evaluate other play concepts

2010-2011 Rig Count



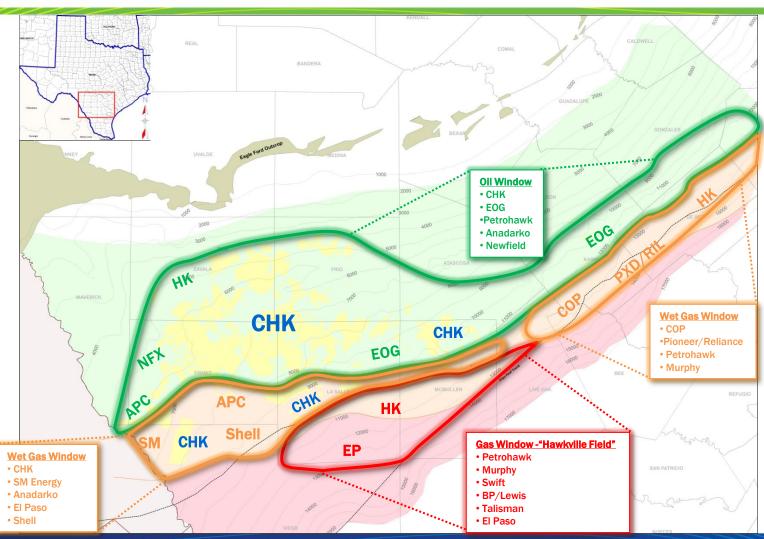
■Other ■OK ■Marcel ■Fayette ■Haynes ■Bar ■EF

Eagle Ford Shale Overview

- World-class liquids-rich play
 - ~3.5 billion boe unrisked unproved resources net to CHK in the Eagle Ford Shale

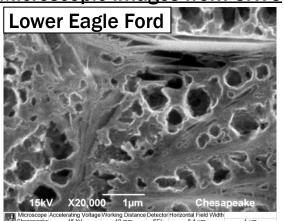
- The Eagle Ford Shale is quickly developing into the most profitable of all shale plays
- CHK began leasing in August 2009 and has since captured the largest position in the industry with ∼625,000 net acres
 - Focused leasehold position in oil and wet gas windows and within areas that have optimal mix of permeability and thermal maturity
- Very attractive rates of return
 - Relatively shallow formation results in low drilling and completion costs
 - High value production from oil and wet gas
- Currently have 14 horizontal wells on production
- Currently operating 16 rigs in the play and drilled 50 wells in 2010
- Plan to exit 2012 with ~40 rigs
- New JV with CNOOC

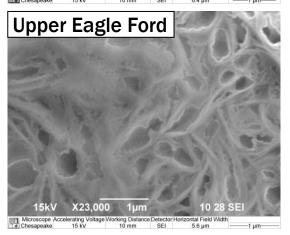
Eagle Ford Shale – JV Summary



- CHK has sold a 33.3% interest in 600,000 net acres in the Eagle Ford Shale to CNOOC International Limited for \$2.16 billion or \$10,800 per net acre, on a 50/50 cash/carry basis; an additional 25,000 acres to be offered after closing
- CNOOC will pay \$1.08 billion in cash at closing and will pay an additional \$1.08 billion by funding 75% of CHK's share of the drilling and completion expenditures until the \$1.08 billion carry obligation has been funded
 - Closing of the transaction occurred in 4Q '10
 - CHK expects to utilize the drilling carry by YE '12
- CHK will serve as the operator of the JV and plans to continue acquiring leasehold in the Eagle Ford Shale
 - CNOOC will have the option to acquire its 33.3% share of the new acreage on mutually attractive terms
 - ➤ CNOOC will also have the option to participate with CHK for a 33.3% interest in the development of midstream infrastructure in the Eagle Ford Shale

Eagle Ford Shale Industry Activity





Eagle Ford Shale – Characteristics

Microscopic images from CRTC

Porosity is distributed between intergranular and intrakerogen

- Depth TVD (feet)
- Well total depth (feet)
- Net thickness (feet)
- Total organic content (TOC)
- Log porosity
- Permeability (nD)
- Pressure gradient (psi/foot)
- Water saturation
- Average lateral length (feet)
- Oil-in-place/section (mmbo/section)
- Gas-in-place/section (bcf/section)
- Anticipated recovery factor oil
- Anticipated recovery factor wet gas
- Average EUR/horizontal well (mboe)
 - Blend of oil and wet gas

3,000 - TT,000	5,000	- 11,500
----------------	-------	-----------------

$$0.4 - 0.7$$

595

Eagle Ford Shale - Development Plan

- CHK leasehold of ~625,000 net acres
 - ~600,000 net acres initially part of 67/33 JV with CEO
- 4 10 wells from single surface pad
- Lateral length: 5000' 8000'
- Nominal spacing: 500' 660' between wells
- Targeted EUR
 - 595 mboe (blended oil and wet gas)
- Target Drilling and completion costs of ~\$5.5 mm per well
 - Currently ~\$6.5 mm per well
- Target Days to drill well (spud to spud): 20-24 days
 - Currently 25 30 Days
- ◆ Total unrisked unproved resource potential: ~3.5 billion boe
- Average operated rig count:
 - Year-end 2010: 12 rigs
 - Year-end 2011: ~31 rigs
 - Year-end 2012: ~40 rigs

Note: resource potential assumes 80-acre spacing

Initial Planning of a CHK Eagle Ford Well hesapeal

Currently Employ 2 Well Construction Schemes

- Primary Casing Design
 - > 9 5/8" (40#/ft, J-55, LT&C) Surface Casing (Inside 12 1/4" Hole)
 - > 5 ½" (23#/ft, P-110, CDC) Production Casing (Inside 8 ¾" Hole)
- Alternate Casing Design
 - > 10 3/4" (45.5#/ft, J-55, BT&C) Surface Casing (Inside 13 1/2" Hole)
 - > 7 5/8" (29.7#/ft, P-110, LT&C) Int. Casing (Inside 9 7/8" Hole)
 - » Can be omitted if not needed
 - > 5 ½" (23#/ft, P-110, Ultra SF) Production Casing (Inside 6 ¾" Hole)

Well Construction is based on Offset Prod./Well History

- Austin Chalk Depletion is Primary Driver
- Olmos Production does not have a large effect

Directional Design/Control and Anti-Collision

- Initially drilling first wells on Pad
- Pads could hold 4 to 10 wells total
- Directional Tools are picked up from underneath conductor

Directional Planning

Surface Nudges

- 0.5 to 1.0 DLS
- Inclinations of 1 to 5 Degrees

Tangent and Curve Sections

- Utilize a Build-Hold-Build Design
 - Initial Build 1 to 2 DLS
 - Curve Section 12 DLS
- Curve Sections are Typically Build/Turn
 - Opposed to S-Shaped Curve
 - More Complex Design and Execution
 - Buckling Reductions
 - » Torque and Drag Reductions

Lateral Sections

 Maximize ROP while maintaining 15 foot vertical window and a 30 foot horizontal window.

Torque and Drag / Hydraulics Modeling Chesapeake

- Utilize Landmark Software Package
 - **COMPASS**
 - WELLPLAN

WELLPLAN

- Torque/Drag Reduction
- **String Design Considerations**
 - → 5" 4.5" DP Design
 - Need for Heavyweight and Placement
 - Trips for Shock Sub/Agitator Installation
- Circumstances Limiting Design Ability
 - Lease Line Conditions and Proximity
 - Maximizing Lateral within Production Unit
- Verification of Equipment Capabilities
- **Hydraulics Modeling**
 - Flowrate Predictions at TD
 - Agitator Losses
 - Dual Size DP advantages.

Surface Hole

- Directional Plan/Control
 - Nudge to Prevent Surface Anti Collision Issues
 - Helps reduce Inclinations in Tangent Section
- Equipment Considerations
 - High Torque/Low Speed Motors
 - > PDC Bits 6 or 7 Blade, 16 MM Cutters
 - » DBR's on More Aggressive Bits observed
- Surface Casing Setting Depths
 - > 1,300' to 4,800' (100' to 150' into Midway Shale)
 - McMullen County is only exception
- Drilling Fluids LSND / Spud Muds
 - Gumbo Shales present in Certain Areas
 - > 500' to 1,500' Deep
 - Control Drill with Fresh Water
 - » Drilling Detergents and SAPP

Tangent Hole

- FIT 14 ppg to 16 ppg
- Directional Plan
 - Build Up to Hold Inclination for Directional Plan to KOP
 - » Rotate Out 100' to 200'
 - This will put High Side Wall Forces in Open Hole Section
 - Casing Wear kept to minimum
- Equipment Considerations
 - High Torque / Low Speed Motor
 - PDC Bits 5 Blade 19 MM and 22 MM Cutters
 - » Have not seen DBR Issues
- Drilling Fluids 80/20 OBM (10.0 ppg to 10.5 ppg)
 - Midway Shale Inhibition
 - > HTHP 6 to 8
 - Solids Control Equipment Important
 - Occasional Manageable Losses from Olmos

Curve Section

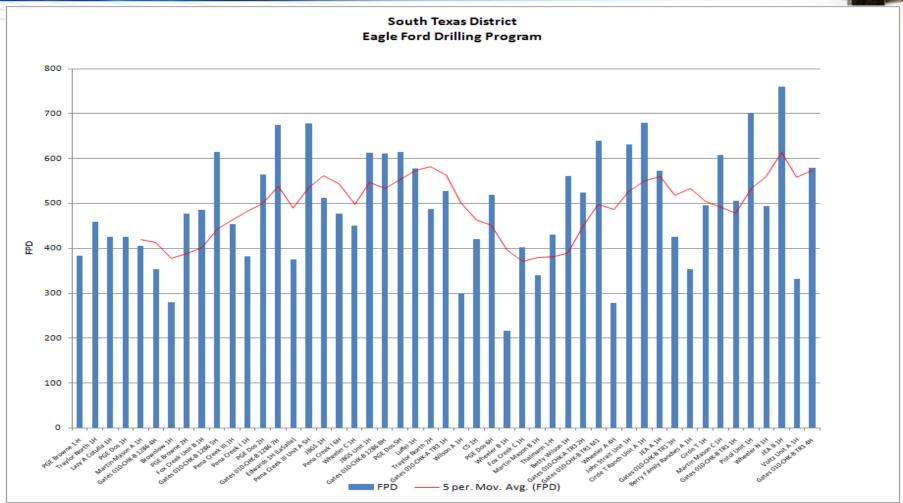
- Directional Plan
 - Build and Turn on 12 DLS total
 - Important to not get behind in Turn
 - Advantages for Buckling
 - » Torque/Drag Reduction
 - » More Complex than S Shaped Curves
- Equipment Considerations
 - High Torque / Low Speed Motors
 - PDC Bits 5 Blade 13 MM Cutters
 - » Directional Control
 - Short Gauge / Flat Cone Profile
- Drilling Fluids 80/20 OBM (10.0 ppg to 13.8 ppg)
 - > HTHP 4 to 6
 - Solids Control Equipment Important
 - Possible Severe Losses in Austin Chalk

Lateral Section

- Directional Plan
 - All Target Changes kept to 1 to 2 DLS, if possible
 - Important to Drill inside Target Box Do not paint line
- Equipment Considerations
 - High Torque / Med Speed Motors
 - > PDC Bits 6 Blade 19 MM Cutters
 - » Directional Control
 - » Longer Gauge / Deeper Cone Profile
 - Use of Agitators
 - » 5,000' to 5,500' Cut Off Point
 - » Lateral Lengths are 6,500' to 7,000' Average
- Drilling Fluids 80/20 OBM (10.0 ppg to 13.8 ppg)
 - > HTHP 4 to 6
 - > Solids Control Equipment Important
 - > 6 RPM Reading Important Hole Cleaning
 - ➤ Clean Up Cycles 100+ RPM

CHK Exploring New Methods in STX

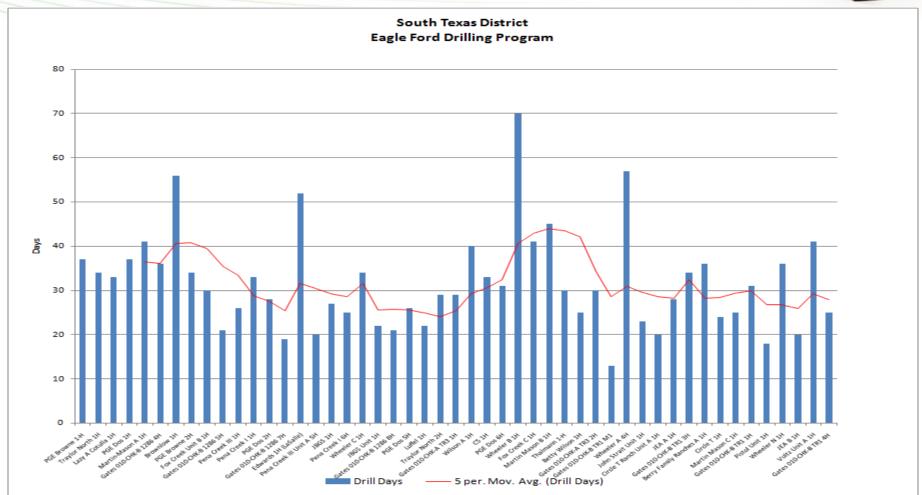
Austin Chalk Depletion / Lost Circulation Issues


- Use of Water Based Mud
- Managed Pressure / Under Balanced Drilling
 - Employed for Infield Drilling
 - Need to Identify Pads that have Issue
 - Training
- Use of EM Directional Tools
 - Handle Larger Amounts of Loss Circulation Material
 - Faster Survey Time Increased Efficiency

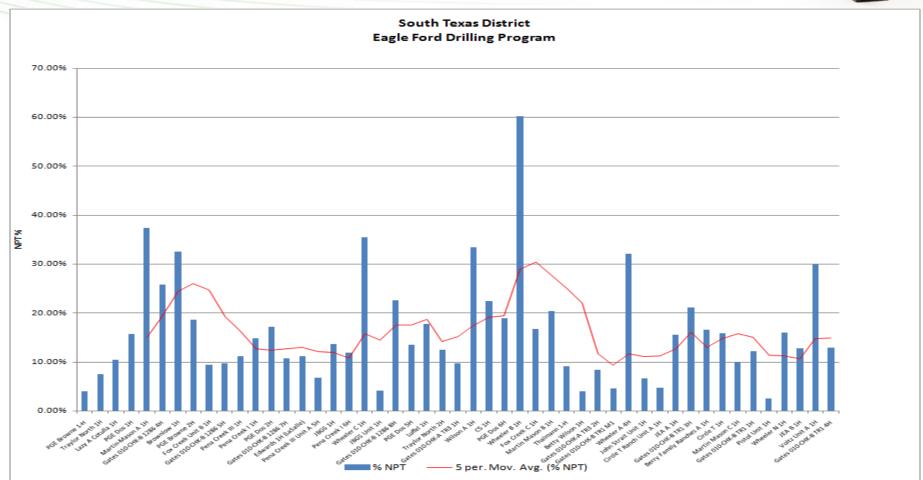
RSS Technology

- Long laterals where Sliding for Target Changes and Directional Control very difficult
 - Compare to use of Agitators
- Currently trying RSS without Motors
 - Benefits gained from Motor Introduction.
- Directional Drilling Tangent and Curve with One BHA

Drilling Performance



Drilling Performance



Drilling Performance

Conclusion / Questions