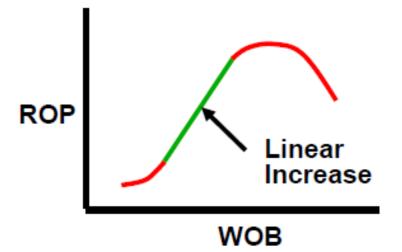


Rock Destruction Foundation

Some Times You Have to Ask – "So What?"


"For drilling data to be meaningful it must be interpreted to show the physics of how the rock is being destroyed."

Rock Destruction Basics

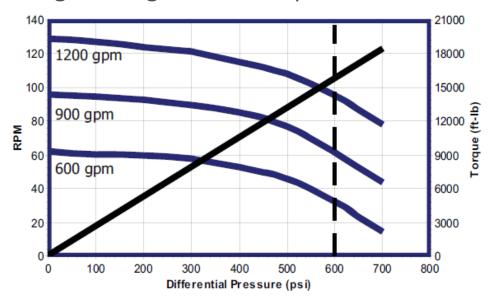
Bit / Rock Interaction

- The weight on bit (WOB) determines depth of cut (DOC).
- The DOC determines the amount of rock removed per rotation.
- The RPM determines the amount of rock removed per minute.
- The Torque is determined by DOC and the rock compressive strength.
 - Force to fail the rock
- There are linear increases in ROP for increases in WOB and RPM.
- Understanding the Rock Destruction Basics is required to understand Mechanical Specific Energy (MSE) which helps determine the efficiency for the rock destruction and removal.

Mud Motor Basics

Mud Motor Differential Pressure and Torque at the Bit

- Motor operation is typically described in terms of differential pressure.
- Differential pressure does not accurately depict the energy being exerted upon the formation thus destroying the rock.
- Differential pressure is an indication of the torque demand/output of the motor.
 - Torque output is linear and can be determined by utilizing the performance graph on the motor specification sheet.



Mud Motor Basics

Mud Motor Revs Per Gallon and Total Bit Speed

- Flow can be utilized to determine the RPM (Bit Speed) of the motor.
 - The theoretical motor rev/gal (RPG) listed on the motor spec sheet can be utilized to calculate no load RPM.
 - The RPM / differential pressure chart for the motor spec sheet should be utilized for detailed drilling performance analysis.
 - The RPG is not linear. The bit speed will be reduced as the differential pressure is increased. This RPM reduction is caused by fluid leakage through the motor power section.

Horsepower at the Bit

Analysis for Power Exerted in Destroying the Rock

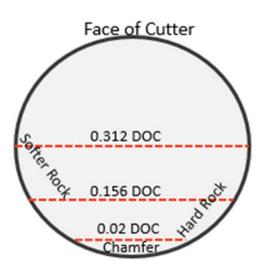
Insight

Analysis

Foundation

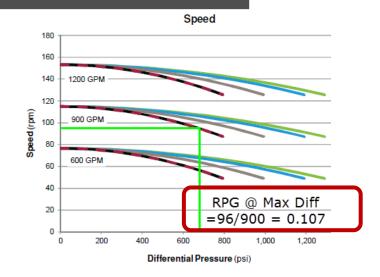
- Together the values for torque and RPM can be utilized to calculate the horsepower (HP) at the bit.
 - HP = (RPM x torque)/5252
 - Sliding HP from motor RPM and torque
 - Rotating HP from string RPM and motor RPM and torque
- Drilling parameter changes will affect the HP at the bit.
- HP can be utilized to:
 - Compare different mud motors for power output capability
 - Compare mud motor output in different drilling environments

Motor	Bit Speed	Bit Torque	Horse Power
PDM	100	10,500	200
Turbine	1,000	1,050	200


Depth of Cut

Analysis for Cutter / Rock Engagement

- Depth of cut (DOC) can be calculated from the drilling data.
 - -DOC = (12*ROP)/(60*RPM)
 - DOC sliding from motor RPM
 - DOC rotating from string RPM and motor RPM
- The minimum DOC should greater than the chamfer dimension of the cutters.
- The maximum DOC should be equal to the dimension of the cutter standoff from the blade.

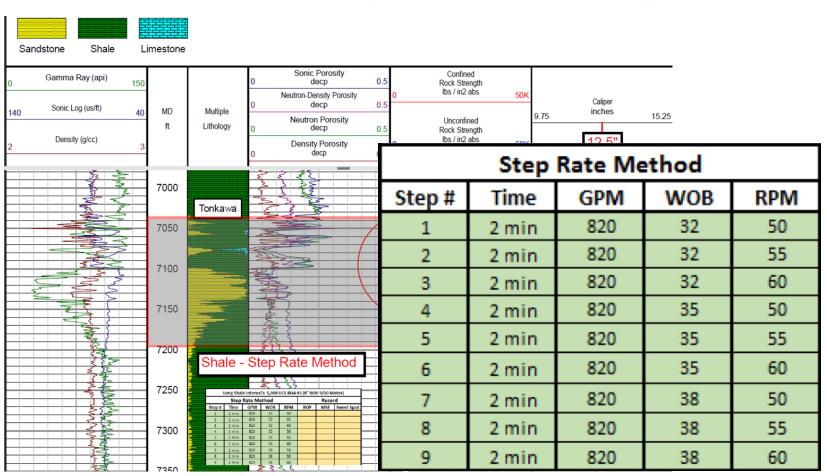


Rock Destruction Calculator

Analysis for Specific Mud Motor Output

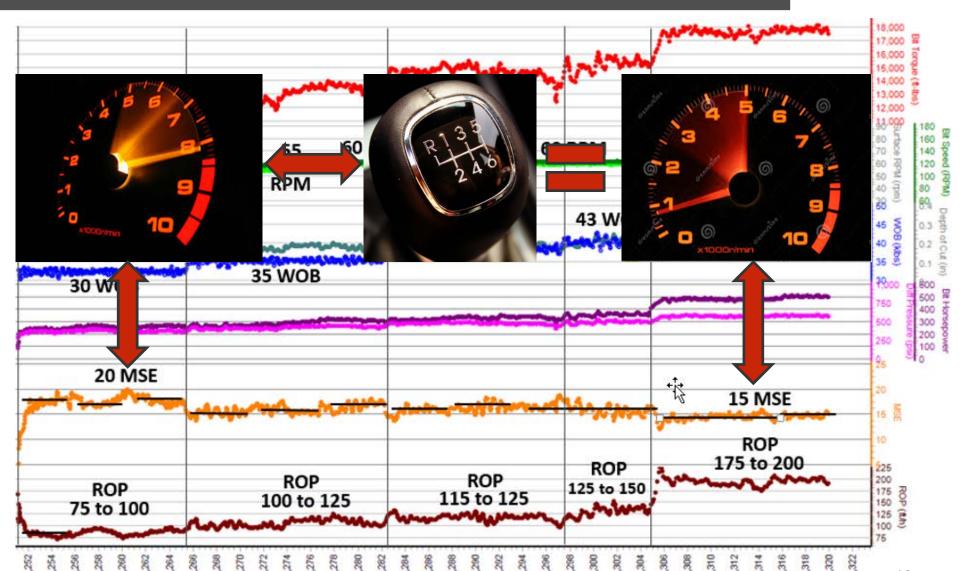
	Performance Specifications						
	Flow Range			600-	1200		
	Rev per Unit Volume			0.			
	Speed Range			76-	153		
	No Load Pressure Loss			10			
	RR-UF100D-UF180		UF114				
Γ	Max Δ Pressure	675	psi	844	psi		
L	Max Torque	14,251	ft-lbs	17,814	ft-lbs		
	Stall ∆ Pressure	1,080	psi	1,350	psi		
	Stall Torque	22,802	ft-lbs	28,503	ft-lbs		

Maximum Differential Pressure	675	From the motor specification sheet performance graph enter the maximum differential pressure	
Maxium Torque	14251	From the motor specification sheet performance graph enter the maximum torque	
Surface RPM	50	Enter the surface RPM being utilized	
Motor Rev/Gal - Theoretical	0.13	From the motor specification sheet enter the no load RPG	
Motor Rev/Gal - At Max Diff	0.11	From the motor specification sheet enter the RPG at a given flow and maximum Diff Press	
GPM	800	Enter the flow rate being utilized	
Total Bit RPM - Slide	100	This is a calculated number for slide drilling from the RPG @ Diff Press x flow rate	
Total Bit RPM - Rotate	143	This is a calculated number for rotate drilling from the RPG @ Diff Press x flow rate + surface RPM	
Differential Pressure Sliding	200	Enter the differential pressure being utilized while sliding	
Torque From Motor Specs Graph Sliding	4223	This is a calculated number for slide drilling motor torque	
Differential Pressure Rotating	600	Enter the differential pressure being utilized while rotating	
Torque From Motor Specs Graph Rotating	12668	This is a calculated number for rotate drilling motor torque	
Bit Horsepower Sliding (RPM x Torque)/5252	81	This is a calculated horsepower number for slide drilling from the motor RPM and torque	
Bit Horsepower Rotating (RPM x Torque)/5252	346	This is a calculated horsepower number for rotate drilling from the total RPM and torque	
Slide ROP	100	Enter the sliding ROP	
Depth of Cut / Revolution (Inches)	0.199	This is a calculated number for slide drilling depth of cut	
Rotate ROP	100	Enter the rotating ROP	
Depth of Cut / Revolution (Inches)	0.140	This is a calculated number for rotate drilling depth of cut	

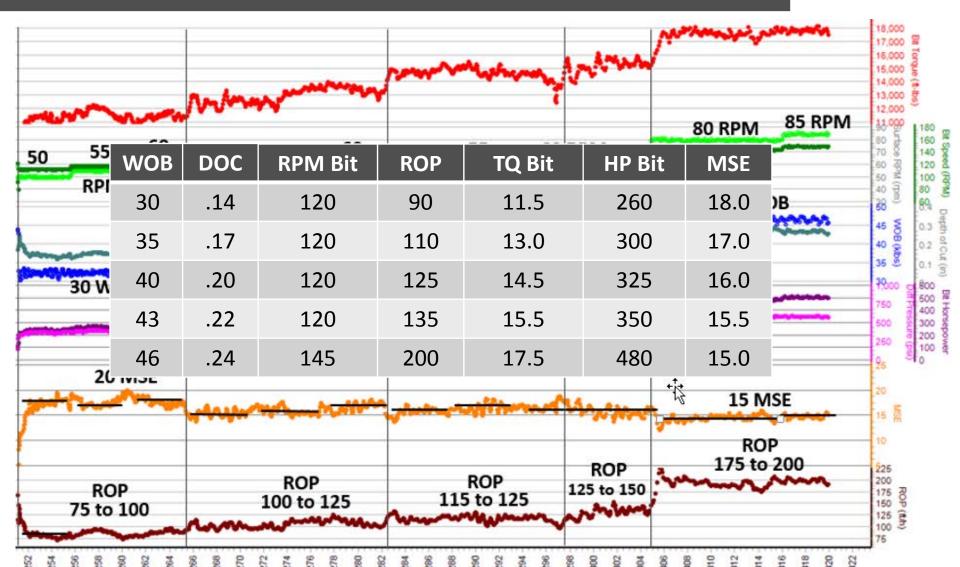

Case Study: Rig Roll Out with MSE

Insight devon

Decision


Foundation

- Dialog in terms of rock destruction physics.
- Road mapping overburden characterization.
- Roll out MSE to the drilling team with understanding.


Case Study: Rig Roll Out with MSE

Case Study: Linear Relationships

Case Study: Depth of Cut Limiters

- Lateral BHA and bit with depth of cut limiter features.
- DOC limiters had to wear to desired ROP DOC.
- Opportunity for improved DOC design based on rock destruction data and increase ROP 18 ft/hr for a 15% improvement.

Comment	ROP	WOB	Bit Torque	Bit RPM	DOC	НР
Whole run	124	32	5353	191	0.13	194
First 1,000 feet	99	30	4580	183	0.11	160
After 1,000 feet	142	34	5894	196	0.14	219

Case Study: Motor Selection and Operation

- Two motors with identical RPG but different maximum torque.
- Similar GPM, surface RPM, and WOB but different results!

	Motor #1	Motor #2
Maximum Differential Pressure	1090	600
Maxium Torque	26160	15850
Differential Pressure Rotating	800	700
Torque From Motor Specs Graph Rotating	19200	18492
Motor Rev/Gal - Theoretical	0.11	0.11
Motor Rev/Gal - At Max Diff	0.08	0.05
Total Bit RPM Rotate (Theoretical)	128	128
Total Bit RPM Rotate (Load Corrected)	111	75
Bit Horsepower Rotating (Theoretical)	468	451
Bit Horsepower Rota	21000	263
Percent of Reduction 120 1200 gpm	18000	-41.56%
Percent of Horsepov	15000	-35.25%
Rotate ROP 900 gpm	12000 🔓	200
Percent ROP Delta B	9000 bio	-33.33%
600 gpm	, , , , , , , , , , , , , , , , , , ,	
20	3000	
	3.00	
0 100 200 300 400 Differential Pres	500 600 700 800	

So What?

From "mash on it" to "the physics of how rock is being destroyed."

- Engineer drilling based on how the rock is being destroyed.
- Characterize the rock with respect to drilling.
- Add MSE as another tool on the Drillers dashboard.
- Calculate the real output of the motor.
 - What is the differential pressure and torque at the bit?
 - With the motor producing torque what is the reduced speed at the bit?
- Calculate the real rock destruction output of the drilling system (surface and motor).
 - What is the horse power at the bit?
 - What is the depth of cut?
- Provide this information to the drilling team in an interpreted fashion.

"For drilling data to be meaningful it must be interpreted to show the physics of how the rock is being destroyed."

Thank you.