

American Association of Drilling Engineers

Rigsite Monitoring and Control of the size of Drilling Fluid Particulates:

"Imaging Analysis of Drilling Mud Particles for Real Time Control"

Tod Canty Sr., PE

JM Canty Inc

Particle Size Analysis of Drilling Fluids

Introduction

- Drilling muds or fluids are complex aqueous or oilbased suspensions designed to fulfill a number of important functions during the oil extraction process.
- Main Functions
 - Provide hydrostatic pressure to prevent formation fluids from entering the well bore
 - Keep the drill bit cool and clean during drilling
 - Carry out drill cuttings
 - Suspending drill cuttings while drilling is paused and while drilling assembly is brought in and out of the hole
 - Avoid formation damage and limit corrosion

Typical Drilling Mud System

Why Drilling Fluid Particle Size Distribution is Important

- Mud performance controlled by manipulating the mud composition and the properties of the constituents through the addition of different additives.
- Particle size significantly affects the way in which the mud interacts with the surrounding geology.
- Particle size measurements play an important role in the formulation of high performance drilling muds.
- Particles smaller than the pore size of the surrounding geological formation will bridge rock pores during mud circulation, leading to the formation of a filter cake that prevents the egress of fluids from the well during drilling.
- This "filter cake" protects the surrounding rock from damage while simultaneously preventing fluid loss and achieving well stabilization.

Industry Techniques for Particle Size Analysis of Drilling Fluid

- History of various techniques
 - Sieves
 - Laser
 - Imaging

Industry Techniques for Particle Size Analysis of Drilling Fluid

- Sieve Analysis
 - Used for many years, simple & inexpensive
 - Disadvantages:
 - Time (Sedimentation and Sieving are both slow and time consuming processes)
 - Particle Size (Particles too small for separation by sieving to be practical)
 - Error (Over-energetic sieving causes attrition of the particles and thus changes the calculated particle size distribution)

Industry Techniques for Particle Size Analysis of Drilling Fluid

- Laser Diffraction
 - Quickness and ease of use
 - Disadvantages:
 - Water droplets (in oil based) Oil droplets (in water based) mud measured as particles.
 - Non-spherical objects (large discrepancy between laser measurements)
 - Laser 1D (equivalent sphere) and not recommended for large aspect ratio.
 - Distortion of Measurements (existence of "ghost" particles caused by sharp edges on the objects which produce high angle diffraction
 - Acicular particles (shows much larger sizes compared to laser diffraction, undercounts events generated by major chord
 - Laser diffraction intrinsically biased towards the smaller edge of spectrum.

Imaging Advantage

Drilling Mud System

- Canty's Drilling Mud particle Analysis system has many distinct advantages over Laser Diffraction systems and sieve
 - Real time 2Dimensional particle shape analysis.
 - The particles are oriented in the fluid dynamically designed flow cell to measure the largest length and widest section of the particles. All aspect ratios are measured correctly
 - Direct measure of particle area a two dimensional measurement.
 - Direct measurement of particle perimeter a two dimensional measurement.
 - Direct measure of major axis and minor axis a two dimensional measurement.
 - Able to separately measure various particles separately water, barite, polymer using size shape and color data
 - Direct measurement of particle color.
 - Large particle range 2" down to .7 micron

How it Works

- Fiber optic lighting
- Fused glass safety barrier
- EXP & ATEX available
- High pressure / temperature ratings
- Auto-dilution

How it Works

- Lighting is critical for any vision based system
- Canty have being doing process lighting for well over 30 years – part of our core business
- Would not be so confident in our vision based technique without our lighting expertise

HOUR BAKE-ON TEST

CANTY COLD LIGHT

Canty's Fused Glass Technology

- Fusion of glass to metal one piece construction
- Critical to our vision based technique
- Pressures to 10,000 PSI, Temp -450 to 800°F

JM Canty, Inc. · Buffalo, New York · Phone: (716) 625-4227 | JM Canty, Ltd. · Dublin, Ireland · Phone: +353 (1) 882-9621

Importance of fused glass technology

- Hermetically sealed one piece construction means no recesses or gaps where product can adhere to and start to build up
- Self cleaning unit

CANTY FUSED GLASS

COMPETITION PLATE GLASS

PLATE GLASS WITH BUILD UP

CANTY MICROFLOW Portable / Lab System

"How it works"

VISION WITHOUT LIMITS

www.jmcanty.com

JM Canty, Inc. · Buffalo, New York · Phone: (716) 625-4227 | JM Canty, Ltd. · Dublin, Ireland · Phone: +353 (1) 882-9621

Canty Laboratory Drilling Fluid System

Lab = Online

JM Canty, Inc. · Buffalo, New York · Phone: (716) 625-4227 | JM Canty, Ltd. · Dublin, Ireland · Phone: +353 (1) 882-9621

Canty In-Line Drilling Fluid System

TYPICAL PACKAGE

 The Canty In-Line Drilling Fluid System allows for the analysis of drilling fluids by a direct in-line process connection.

Canty Cross-Cut Sampling Valve

- Canty's cross-cut sampling valve system allows for quick consistent and repeatable sampling of a drilling fluid process line.
- The valve system directly samples a cut of fluid from the center of a process line.
- That full "cut" is then diluted in water and directly run through the analysis equipment.
- This method allows for direct testing of a representative "cut" of drilling fluid.

Laser Sampling Problems

Laser diffraction typically only uses a sample size of around 1mL to 2mL. The problem with this is the steps necessary to break down a sample small enough for laser diffraction from the original sample gathered at the process line. Some possible issues are:

- Does the sample container harbor particles not wanted within the sample?
- By the time the sample is drawn have particles began to settle out of solution?
- Is there a large difference in particle density between a sample drawn from the top of the container to the bottom?
- Is a few mL sufficient for proper particle analysis?
 - With the Canty Cross-Cut Sampling Valve none of these potential sampling issues come into play.

Sample Extraction Comparison

Laser Sample Extraction

Canty Cross-Cut Sampling Valve System

JM Canty, Inc. · Buffalo, New York · Phone: (716) 625-4227 | JM Canty, Ltd. · Dublin, Ireland · Phone: +353 (1) 882-9621

LCM Data

Sample	Circularity	Aspect Ratio	DV50	Average Length	Average Width
A1	0.645118	1.54769	7.51416	5.33018	4.38413
A2	0.765093	1.58019	79.2649	24.8171	19.807
А3	0.845846	1.56903	239.155	199.259	158.837
A4	0.850825	1.53341	2189.72	2028.52	1707.78
A5	0.783272	1.74953	2125.38	1122.23	838.133
A6	0.822686	1.60664	228.406	143.751	110.268
A7	0.79645	1.54956	347.314	26.0251	21.0355

LCM Data

Figure 16 – DV50, Samples A1 – A7

Figure 17 – Average Particle Length (mean fiber length) & Width (mean minor axis)

Drilling Mud Testing

Drilling mud spiked with Barite + Mica + Gseal + LCF + Carb + Poly (Cross-polarized lighting used to optimize difference in particles types)

Drilling Mud Testing

640 x 480 color image oil based drilling mud (Cross-polarized lighting used to optimize difference in particles types)

Drilling Mud Testing

Water based mud

Water based mud spiked with – carb Notice increase in "white" particles

Canty Software Analysis

Canty Vision Software Package Individually analyzes particles (water based drilling mud / polarized lighting)

Conclusion

- Canty's Drilling Fluid Particle Analyzer is a system capable of high precision drilling fluid analysis. Our analyzers offers many unique advantages over laser diffraction technology.
- With the ability for high resolution color analysis the Canty Drilling Mud System can be a unique tool for drilling fluid engineers to aide in the microscopic examination of drill cuttings.

Questions?