Well harne and No

DRILLING MUD REPORT

County, Parish, Ottohore Area

State/Province

Deciphering The Daily of Media Report Reports Reports

BIT DATA DRILLING STRING CASING CIRCULATION DATA

Field or Block No

Rusty Connell

April 2015

MUD PROPERTIES						MUD PROPERTY SP	EDFICICIONS	
Sample from		DFL RtD	OFL PHO	OF L. PA C	OFL PEO	Weight	Viscosity	Fittele
Time Dample Taken								
Rowline Temperature (°C or °F))					RECOMMENDED TO	UP TREATMENT:	
Density Spogi Status to C	twenttow Y							
Furned Viscosity (secto) AFI (6)								
Place's Viscosity op/it	'Cor'F							
Years Point (6V100 th)								
Gel Strength (Ib/100 ff ²) 10 sec	no min	1	- /	1	- (
Fitrate API (m/50 min)								
HTHP Filtrate (pm ³ /30 min) (P.	"C or "F					REMARKS:		
Care Thorness 39nd in. or min		J	- /	1	- 1			
Electrical Stability (v), Mater Ty								
Retort Solids, % volume					- 1			
Retort Liquid. % volume Ot/life	ter	J	- /	1				
OlifWater Fatio		7	- /	- /	$\overline{}$			
Assumey (V _{ss}), (cm ² H ₂ SO ₄)								
Filtered yes no								
Chronice Whole Mud Closs (mg/	L)							
Carolum Whole Mud Ca _{CM} (mg	A.i				- /			
					$\overline{}$			
PRODUCTS						SOUDS EQUIPMENT		
PHODUCIO						00000 EQ07-NEX		
DRILLING FLUID VOLUME	90U09 A	NALYDID		FLUID RH	ECLOGY 5 HY	DRAULICE	COST ANALYSIS	
REPRESENTATIVE			PHO	ME.		WAREHOUSE PH	ONE	

Contact Information

Oxy Central Drilling Group (CDG)

5 Greenway Plaza - Houston

Rusty Connell – Houston BU Drilling Fluid Specialist
Office 713-840-3006, Rm 21.098

Fred Growcock – Global Drilling Fluid Specialist
Office 713-366-5786, Rm 19.009

Agenda - Objectives

- I. Daily Mud Report Contents
- 2. Drilling Fluid Systems
 - Water-based Mud (WBM) Systems
 - Non-aqueous Drilling Fluid (NADF) Systems
- 3. Mud Properties and Tests
 - WBM
 - NADF
- 4. Effects of Contamination

Drilling Fluid References

- API RP 13 B1 Field Testing Water-based Drilling Fluids
- API RP 13 B2 Field Testing of Oil-based Drilling Fluids
- API RP 13C Mud Processing (Solids Control)
- API RP 13D Rheology and Hydraulics
- API RP 13L Training and Qualification Drilling Fluid Technologists

Daily Mud Report

What is a Daily Drilling Mud Report?

- Link between the drilling fluid (mud) company and the Oil and Gas Company (Operator)
- Used to evaluate the daily progress of the well and a means of summarizing the drilling operation once a well is completed (recap)
- Used as a reference to program future wells
- Data used to run hydraulics programs
- Used to monitor, identify and treat mud property trends

Daily Mud Report Software

- Baroid DFG Software © with DrillAhead Hydraulics Module ©
- MI OneTrax © with Virtual Hydraulics ©
- Baker Hughes Advantage ©
- Newpark MudPIT © (coming out with update version soon)
- NOV FluidControl Drilling Fluids Engineer ©/Reporting Software

Daily Mud Report Content

Daily Mud Report - Contents

- Report Number and Date
- Well Information
- Drilling Assembly
- Casing Data
- Mud Volume
- Circulation Data
- Mud Properties/Specifications
- Mud Products/Inventory

- Solids Control Equipment
- Treatment Remarks
- Activity Remarks
- Mud Volume Accounting
- Solids Analysis
- Rheology/Hydraulics
- Cost
- Contact Information

Report Number, Date, Well Information

		Daily	Drilling Fluid Report	API No: 4	-	Report No: 002
Date	06-22-2014 11:59:00 PM	Well Name		Spud Date	06-21-2014	
Operator	<u></u>	Country	United States of America	Depth (MD/TVD)	1,907 / 1,907	ft
Operator Rep		State	Texas	Rig Name		
Contractor		County	Hidalgo	Rig Activity	Drilling	
Contractor Rep	<u> </u>	Field or Block		Unit System	WSE API(Copy)

RC 3_15

Drilling Assembly, Casing Data, Mud Volume, Circulation Data

report for a mine		Log ten i	EE 1000	mounty i		13011
DRILLING ASSEMBLY	CASING (*TVD)	MUD VOLU	IME (bbl)	CIRCULATION DATA		Α
15999 ft, 4.5-in DP	9.625-in @5772 ft (5772 TVD)	Hole	Active Pits	Pump Make	ARDNER DENVER PZ	GARDNER DENVER PZ-11
1302 ft, 4.5-in HWDP	7.625-in L @9795 ft (8445 TVD)	837	444	Pump Liner x Stk	6x11 in	6x11 in
32 ft, 5.25-in SUB		Total Circulating Volume		Pump Capacity gal/stk	3.837	3.837
62 ft, 4.75-in DC		12	81	Pump stk/min	40@95%	40@95%
8 ft, 4.75-in STAB/SUB		Depth Drilled	d Last 24hr	Flow Rate	307	gal/min
31 ft, 4.875-in MM		354	ft	Pump Pressure	3420	psi
Nozzles 16x6 1/32"		Volume Drille	ed Last 24hr	Bottoms Up	85.1 mi	n 6808 stk
Bit 6.75-in PDC		16	bbl	Total Circulation	175.3 mi	n 14020 stk

10

Mud Properties and Specifications

Properties	S	Hyd 1	2	3	4	Targets	Program
Fluid Set		Polymer Mud					
Source		ACTIVE					
Time		17:00					
Depth (MD/TVD)	ft	7,242/7,242					
FL Temp	٩F	90					
Density @ °F	ppg	9.10@60					
FV @ °F	sec/qt	35@60					
PV @ °F	ср	3@60					
YP	lbs/100ft2	7					
GELS	lbs/100ft2	4/8/12					
600/300		13.0/10.0					
200/100		8.0/6.0					
6/3		5.0/4.0					
Filtrate (API)	mL/30min	18.0					
HTHP @ °F	mL/30min						
Cake (API/HTHP)	32nd in	2/0					
Corr Solid	% by vol	3.8					
NAP / Water	% by vol	0.0/94.7					
NAP / Water Ratio							
Sand	% by vol	0.10					
MBT	ppb eq.						
pH @ °F		10.5@80					
ALK Mud (Pm)	mL	1.30					
ALK Filt (Pf/Mf)	mL	0.60/1.00					
Chlorides	mg/L	29,000					
Total Hardness	mg/L	1,320					
LGS / HGS	% by vol	3.8/0.0					
LGS / HGS	ppb	34.20/0.09					
ASG	SG	2.603					
Additional Propertie	es						

RC 3_15

Products and Solids Control

Products Used Last 24 Hrs									
Product Name	Units	Start	Rec	Used	End	Cost			
Lime	50 lb	50	0	5	45				
Barite	100 lb	200	200	50	350				
Caustic Soda	50 lb	50	0	5	45				
Bentonite (Bulk)	2000 lb	20	20	10	30				
Starch	50 lb	50	0	5	45				
Defoamer	5 gal	32	0	6	26				

SOLIDS CONTROL EQUIPMENT Last 24 hr							
Туре	Model/Size	Hrs Used					
SHAKER 1	200/200/200/200	24.0					
SHAKER 2	200/200/200/200	24.0					
SHAKER 3	200/200/200/200	24.0					
414 Centrifuge	0	24.0					

> Treatment and Activity Remarks

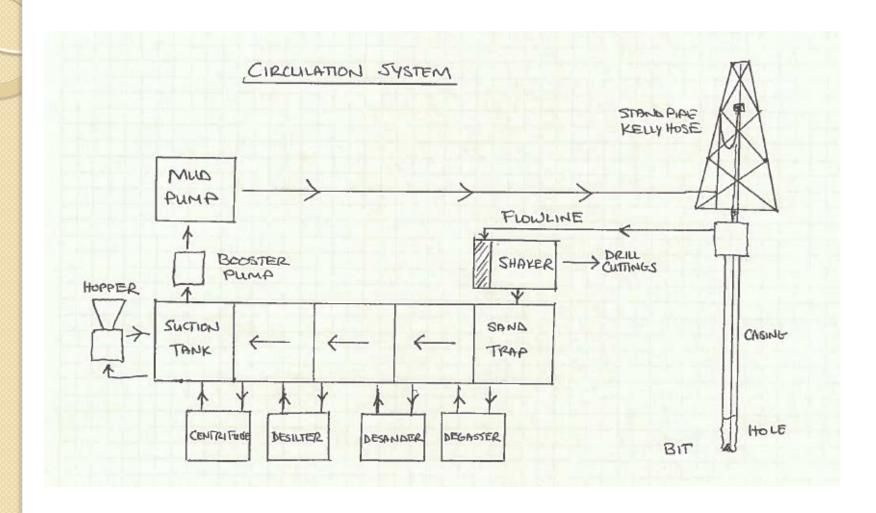
REMARKS AND TREATMENT	REMARKS
Limited treatments added as majority of day spent out of hole tripping. Ran	Drilled to 17434', then decision made to POOH to check MWD. Circulated 5 bottom's up,
centrifuge to lower drill solids content, which showed improvement of	then POOH. Currently RIH. Next 24 hours: Contininue RIH to bottom. Drill to TD.
properties. Running diesel while drilling to maintain low viscosity (50-55	
sec/qt). Continuing treatments when back drilling.	

- Mud property, hole condition and equipment changes
- Time, Mud Volume, Solids Analysis, Rheology/Hydraulics

TIME DISTRIBUTION Last 24 hrs				SOLIDS ANALYSIS		RHEOLOGY & HYDRAULICS	
Rig Up/Service		Oil Added	8	Salt Wt%	25.11	n	0.755
Drilling	5	Water Added		Salt Conc	16.44	k, lb-s^n/100ft2	0.184
Tripping	15	Mud Received		Adjusted Solids	8.82	TauY/LSYP, lb/100ft2	7.08/6
		Mud Returned		Oil/Water Ratio	84/16	Bit Loss/%, psi/%	56 / 1.6
Make up BHA		Shakers		Average SG Solids		Bit HHP/HIS	10 / 0.3
CIRCULATE	4	Evaporation		Low Gravity %	2.8	Jet Velocity, ft/s	83.6
MWD Issues		Centrifuge		Low Gravity Wt.	25.03	Va Pipe, ft/min	297.3
		Formation		High Gravity %	6.1	Va Collars, ft/min	327.1
		Left in Hole		High Gravity Wt.	87	CVa Pipe, ft/min	456
		Other				CVa Collars, ft/min	480.2
		Dump for Dilution				ECD at Shoe, lb/gal	10.03
						ECD at TD, lb/gal	10.54

13

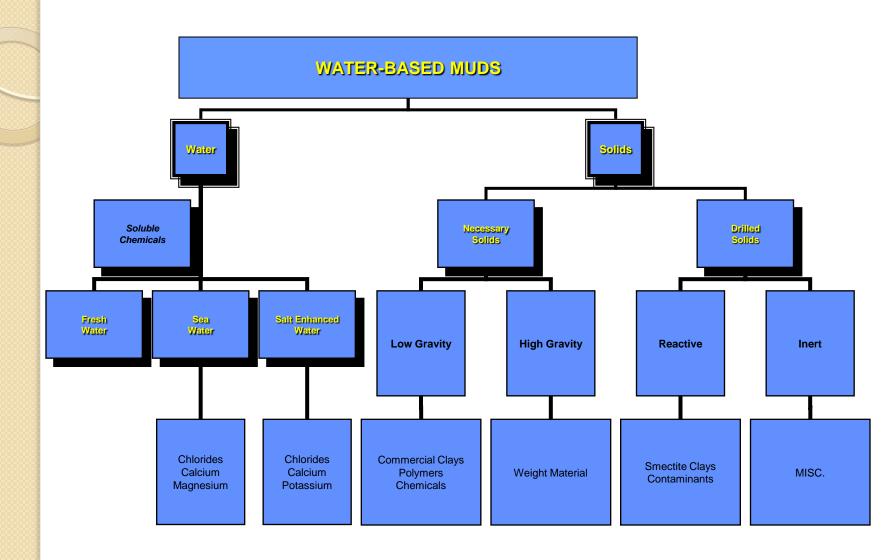
Cost and Contact Information


Daily Products Cost	\$10,787.48	Total Daily Cost		\$11,822.28
Cumulative Products Cost	\$44,740.30	Total Cumulative Co	ost	\$61,426.20
Representatives				
Office			Telephone	Monahans,Tx.
Warehouse			Telephone	

Volume Accounting (More Detail)

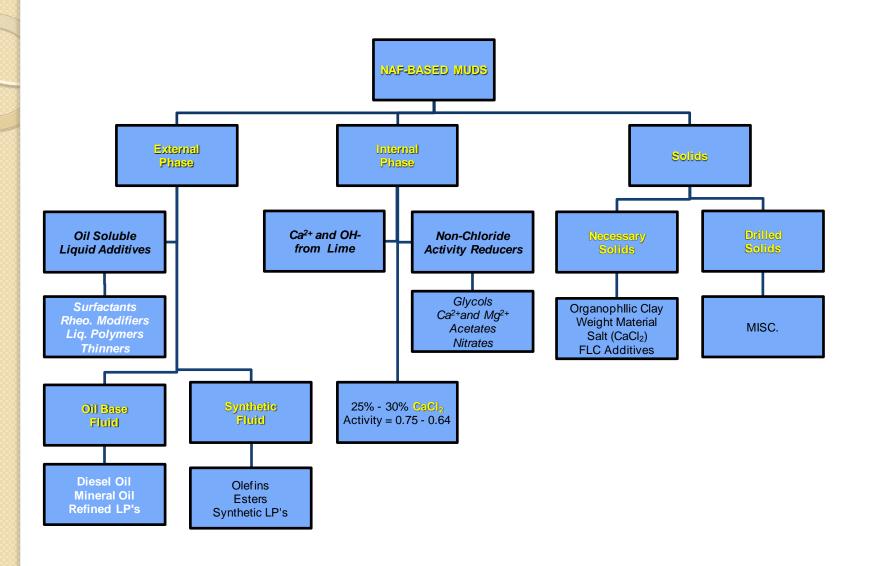
TANK	CAPACITY	WEIGHT	VOLUME	REMARKS	CLASS	SUM PIT VOLUM	MES
	bb1	1b/ga1	bb1		ļ		
Active	500		411		Active	MUD VOLUME	bb1
Slug Pit	100		29		Active	Active	444
Trip Tank	70		4		Active	Reserve	395
OBM Frac 1	500		31		Reserve	Premix	
OBM Frac 2	500		20		Reserve	OTHER VOLUME	
OBM Frac 3	500		26		Reserve	Pill	
OBM Frac 4	500		206		Reserve	Breaker	
OBM Frac 5	500		112		Reserve		

Drilling Fluids


Mud Circulating System

FUNCTIONS OF DRILLING FLUIDS

- I. Remove drilled cuttings from the hole
- 2. Control subsurface pressure
- 3. Suspend and release cuttings and suspend weight material
- 4. Seal permeable formations
- 5. Promote borehole stability
- 6. Minimize reservoir damage
- 7. Cool, lubricate and support the bit and drilling assembly
- 8. Transmit hydraulic energy to tools and bit
- Ensure adequate formation evaluation
- 10. Control corrosion
- 11. Minimize impact on environment


Water-Based Mud

Classification of Water-Based Drilling Fluids

- Spud Mud Un-weighted clay water suspensions
- Low Solids Mud (typically < 6 vol% LGS) e.g. fw gel, polymer, phpa, salt saturated, potassium, designed for higher ROP
- Deflocculated, weighted clay-water suspensions, e.g. lignosulfonate-based muds
- Calcium-treated, weighted deflocculated clay-water suspensions, e.g. Gyp or Lime muds
- HTHP Systems, e.g. lime-clay-extender muds and muds based on thermally stable synthetic polymers
- Salt-water systems, brine based, e.g. using attapulgite clay
- Inhibitive mud Glycol, polyamine, potassium, silicate, etc.

Oil- and Synthetic-Based Mud (NADF)

RC 3_15 20

Most NADFs are Invert Emulsions

THREE PHASE SYSTEMS - Two immiscible fluids, and the solids phase

- OIL / SYNTHETIC FLUID continuous external phase, lipophilic liquid product additives.
- <u>WATER</u> emulsified droplets (typically CaCl₂ brine),
 as internal phase, soluble lime.
- <u>SOLIDS</u> barite, organophilic clays, drill solids, insoluble additives - fluid loss control products, LCM, etc. (soluble additives)

WBM Properties and Tests

Standard Properties of WBM (API RP13 B1)

PROPERTY

- I. Mud Weight
- 2. Funnel Viscosity
- 3. Plastic Viscosity
- 4. Yield Point
- 5. Gel Strengths
- 6. Filtrate (API Fluid Loss)
- 7. HTHP Filtrate
- 8. Filter Cake Thickness
- 9. Solids Content
- 10. Liquid Content (Oil / Water)
- 11. Sand Content
- 12. Methylene Blue Capacity (CEC)
- 13. pH
- 14. P_m
- 15. P_f
- 16. M_f
- 17. Chlorides
- 18. Total Hardness as Calcium

<u>UNITS</u>

ppg, lb/ft³, SG sec/qt

сP

Ib/100 ft²

Ib/100 ft²

cm³ /30 min

cm³ /30 min

32nd in

% by vol

% by vol

% by vol

eq. ppb

none

cc acid

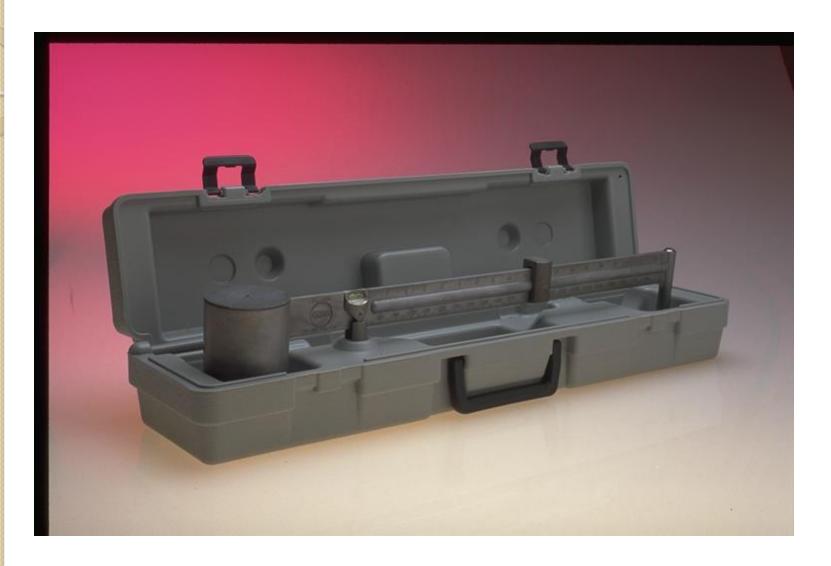
cc acid

cc acid

mg/L

mg/L

Physical


Chemical

Mud Properties – WBM

General Properties: Mud Weight & Viscosity First Warning Signs Rheology Hole cleaning, barite sag, suspension, ECD **Filtration** Invasion, cake quality **Retort & MBT** Solids, liquids %, sand, reactive solids (clay) **Chemical Properties** Chemical Contaminants, Alkalinity **Misc. Properties**

		MUD PROPE	RTIES	
Sample From		Suction@22:00	Suction@13:30	
Flow Line Temp	°F	110	104	
Depth/TVD	ft	11038/9062	10379/9058	
Mud Weight	1b/ga1	8.5@110°F	8.4@102°F	
Funnel Viscosity	s/qt	43	47	
Rheology Temp	ą.	120	120	
R600/R300		38/33	37/32	
R200/R100		31/27	29/25	
R6/R3		15/12	14/12	
PV	Ъ	5	5	
YP	1b/100ff ²	28	27	
10s/10m/30m Ge1	1b/100ff ²	15/17/18	14/16/17	
API Fluid Loss	cc/30 min	7	6.9	
HTHP FL Temp	cc/30 min			
Cake API/HTHP	1/32**	1/	1/	
Solids	%Vo1	1	.5	
Oi1/Water	%Vo1	5/94	5/94.5	
Sand	%Vo1	1	.05	
MBT	1b/bb1	.5	.5	
pH		9.2	9.2	
Alkal Mud (Pm)		.1	.1	
Pf/Mf		.05/1.4	.1/1.9	
Chlorides	mg/1	3750	4300	
Hardness Ca	mg/1	60	60	
LSRV	сP	21000	33200	
TOTAL ACTIVE	bb1	1190		
WASTE MANAGEME	\$	1250.95		
SOLIDS VAN	\$	4175.00		
Conqor test	ppm	3250	2450	
Dissolved O2	ppm	2	1	

Mud Weight / Density

Courtesy of Fann Instrument Company

Mud Weight (Density)

- lb/gal (ppg) pounds / gallon
- kg/m³ kilograms / cubic meter
- lb/ft³ pounds / cubic foot
- psi/1000 ft pounds / square inch per 1000 ft (vertical depth), hydrostatic pressure gradient
- s.g. specific gravity (no units)

Funnel Viscosity

Courtesy of Fann Instrument Company

Funnel Viscosity

The timed <u>rate of flow in sec / quart</u> or sec / liter through funnel with 3/16" opening:

- Begin with ~1.5 qts of mud poured thru a 12mesh screen
- Time the first I quart (or liter if metric)
- Calibrate the Funnel with water: 26 +/- 0.5 sec/qt
- Note: Funnel viscosity is not a quantitative measurement of viscosity. Viscosity of most drilling fluids varies with the shear rate (velocity) of the fluid. The shear rate in a Funnel is not defined and varies with the thickness, temperature and level of fluid in the Funnel.

RC 3 15

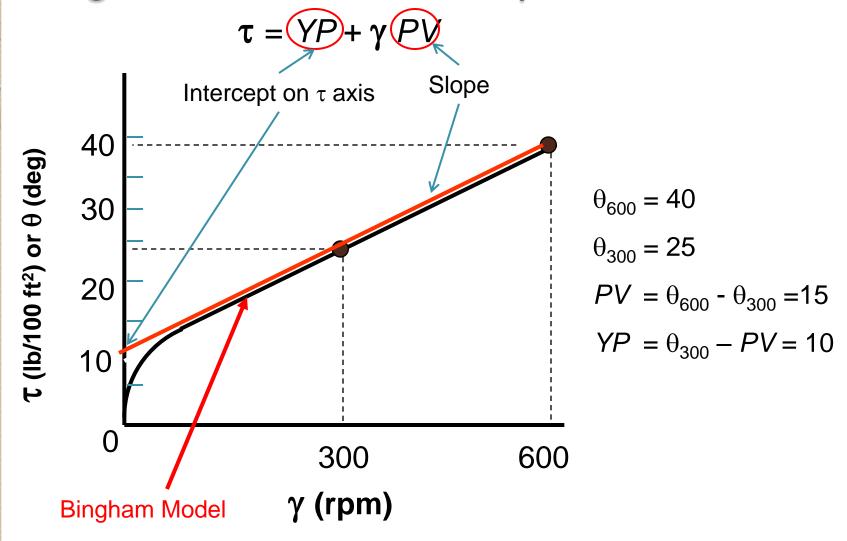
Viscosity is a function of Shear Rate: Shear Stress Shear Rate

Bingham Plastic (or Pseudoplastic) has been the preferred Flow Model:

or

$$au$$
 = YP +

 $\gamma \times P'$


- Type of solids and associated charges
- Concentration of active solids
- Dissolved salts

Mechanical Interactions

- Solids concentration
- Size and shape of the solids
- Viscosity of the fluid phase

29

Bingham Plastic Model – 6-Speed Viscometer

Water-Based Mud Kit

Courtesy of Fann Instrument Company

Viscosity Profile (Rheology)

Fann Model 35 Viscometer

(6 - Speed VG-Meter)

 θ_{600}

 θ_{600}

 θ_{300}

 $-\theta_{300}$

 θ_{200}

PV

 θ_{100}

 θ_6

 θ_{300}

 θ_3

<u>- PV</u>

YP

Gel Strengths – 10 s, 10 m, 30 m

Static Filtration at Ambient Temperature

API Filter Press: Fluid

Loss (Volume of Filtrate

Collected, cc or mL)

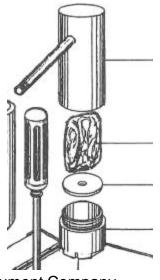
- 100 psi
- 30 min
- 7.5 in² # 50 Whatman
 Paper (2.7 micron)
- Ambient Temperature

Static Filtration at Ambient Temperature

API Filter Press: Filter Cake Thickness (in increments of 1/32")

HTHP Fluid Loss (Static)

Volume (cc) of Filtrate collected X 2


- 30 min
- 300°F (or less BHST > 175°F)
- 3.75 sq. in. #50 Whatman paper
- 500 psi Differential Pressure
- 600 psi TOP
- 100 psi BOTTOM (back pressure)



Retort

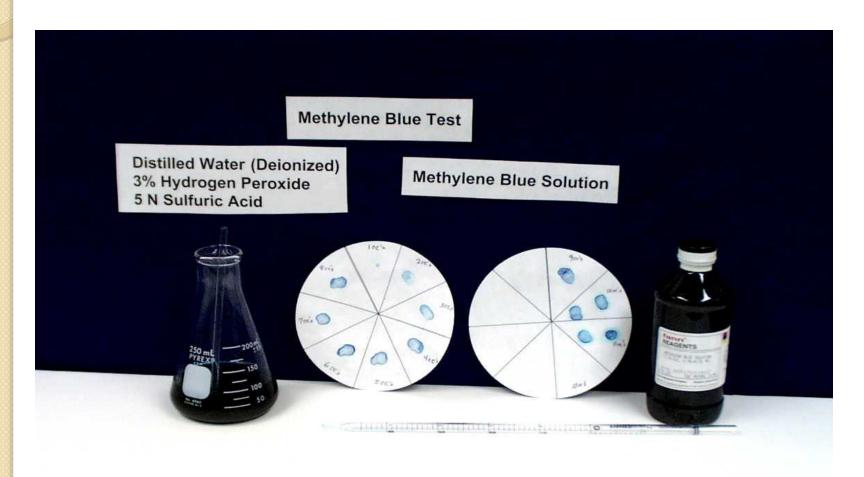
Distilled Fractions

- % Solids
- % NAF (Oil or Synthetic Fluid
- % Water

Courtesy of Fann Instrument Company

Sand Content

% By Volume (% v/v) Sand

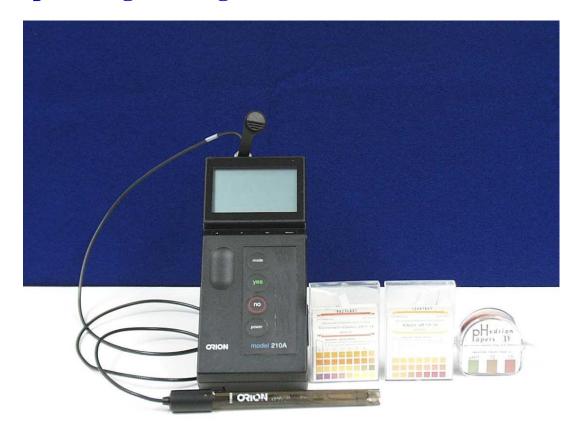


Note: These are particles that are "sand-size": coarser than 200 mesh (74 μ m) Courtesy of Fann Instrument Company

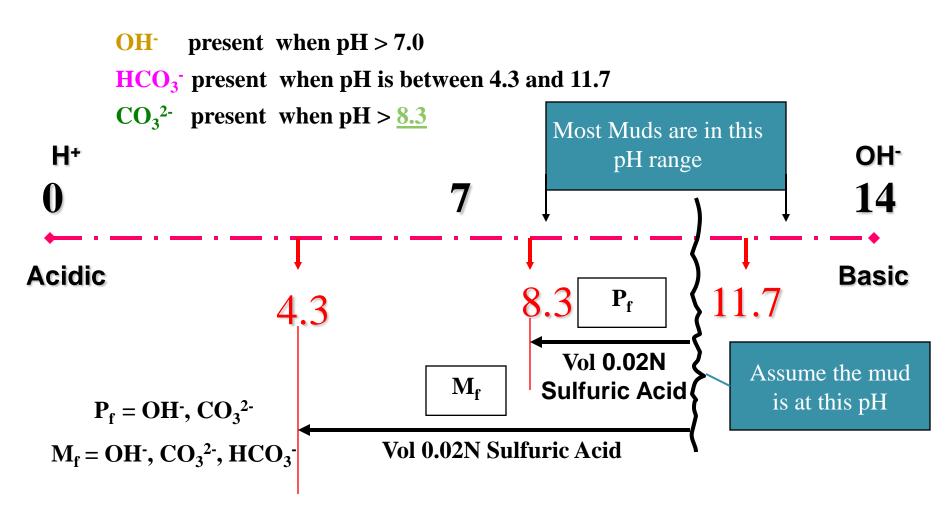
CEC - Cation Exchange Capacity

Methylene Blue Test: activity and concentration of clays

CEC (Equiv Ib/bbl Bentonite) = 2.5 x Total Vol Methylene Blue

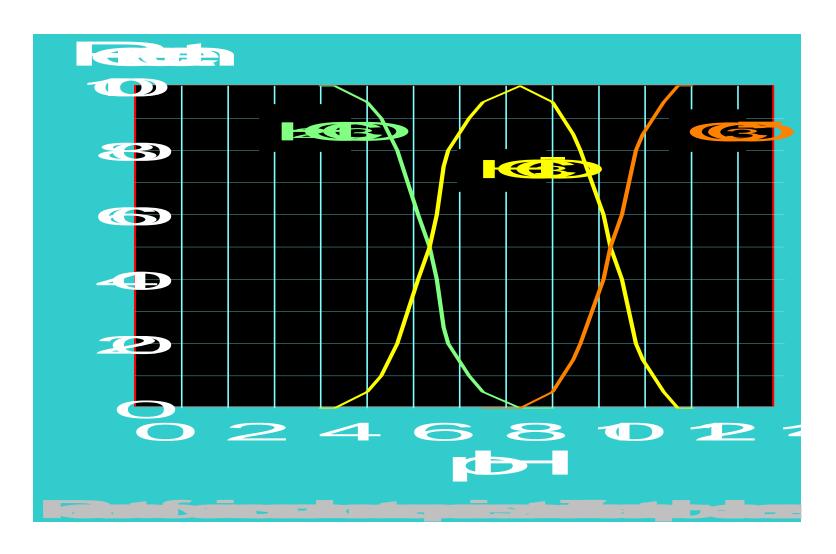


Courtesy of Fann Instrument Company


- pH Meter Electrometric
 (Preferred Method)
- pH Strips Colorimetric
 (General Range)

pH – negative log of H+ ion

pH & Alkalinity


Alkalinity – measure of the quantity of an acid to reduce the pH to a particular value

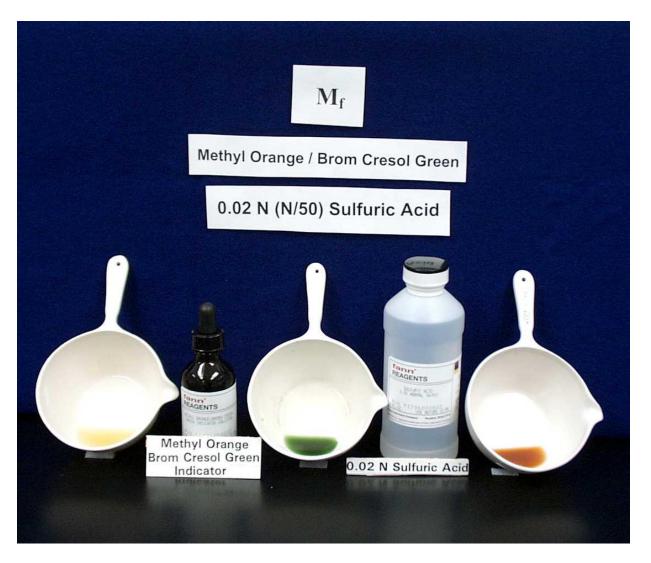
RC 3_15

40

Carbonate / Bicarbonate Equilibrium


Pm (Phenolphthalein Endpoint of the Mud)

Pm – alkalinity measurement of whole mud – measure lime/cement solids in mud


Courtesy of Fann Instrument Company

Pf (Phenolphthalein Endpoint of the Filtrate)

Courtesy of Fann Instrument Company

Mf (Methyl Orange Endpoint of the Filtrate)

Cl⁻ (Chlorides)

Courtesy of Fann Instrument Company

Total Hardness (Ca²⁺ & Mg²⁺)

Calcium (Ca²⁺)

Courtesy of Fann Instrument Company

NADF Properties and Tests

Mud Properties – OBM

General Properties:				MUD PROPE	RTIES	
		Sample From		Suction@22:00	Suction@12:00	
Mud Weight &	>	Flow Line Temp	°F	80	77	
Viscosity	\neg	Depth/TVD	ft	11829/4591	10750/4551	
(First Warning Signs)		Mud Weight	1b/ga1	9.2@80°F	9.2@74°F	
((Funnel Viscosity	s/qt	70	73	
DI salama		Rheology Temp	°F	120	120	
Rheology	_	R600/R300		53/36	57/39	
Llala alaanina harita		R200/R100		30/23	31/24	
Hole cleaning, barite	\neg	R6/R3		14/13	14/13	
sag, suspension, ECD		PV	сP	17	18	
		YP	1b/100ft ²	19	21	
		10s/10m/30m Ge1	1b/100ff ²	20/26/32	23/33/38	
Filtration _		API Fluid Loss	cc/30 min	na	fia.	
Invasion, cake quality	>	HTHP FL Temp	cc/30 min	4.4@100°F	4.4@100°F	
		Cake API/HTHP	1/32**	na/l	na/l	
		Unc Ret Solids	%Vo1	17.5	17	
Retort	_	Correct Solids	%Vo1	15.15	14.62	
Solids, liquids %, SWR		Oi1	%Vo1	61.5	61	
		Uncorr Water	%Vo1	21	22	
		Oil/Water Ratio		75/25	73/27	
		Aikai (Pom)		2.0	1.6	
Chemical Properties L		C1 Whole Mud	mg/1	57000	58000	
<u> </u>	>	Salt	%Wt	29.81	29.21	
Salt & Lime Content		Lime	1b/bb1	2.6	2.08	
	//	E-Stability		805	880	
Emulsion Stability		PPA	cc/30min	2.2	2.2	
	-					
	//					
Misc. Properties 🥏						
			·			


49

Rheology (Viscosity and Gel Strength)

- Test at 120° or <u>150°</u>
- Run VG meter at 300 rpm while heating sample
- After completing viscosity profile (600, 300, 200, 100, 6, 3 rpm) and gel strengths (10 sec, 10 min, 30 min), check the heat cup for barite settling

Heat Cup

HTHP Fluid Loss Tester

- This is one of several types of units. Good For 300°F on a regular basis.
- For higher temperatures a different type unit must be used, and higher pressures (top and bottom) should be used. (Differential pressure should still be 500 psid)

HTHP Fluid Loss

 This type of unit is used for temperatures above 300 °F.

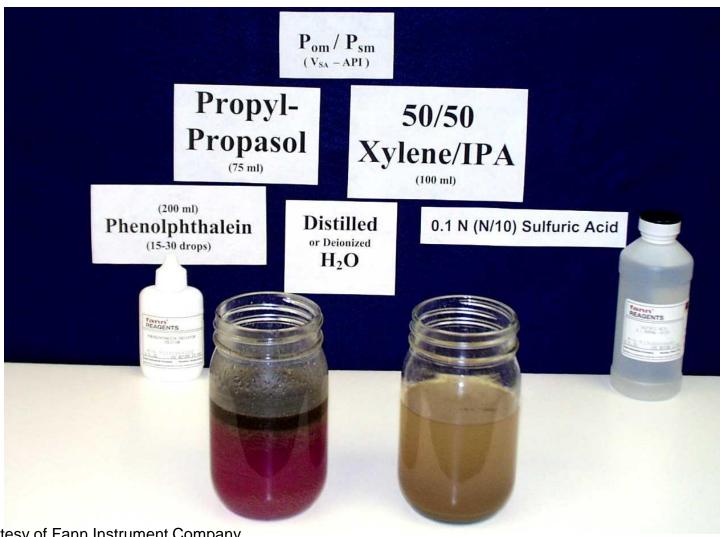
Usually employs
 Nitrogen
 pressurization from
 a big cylinder.

Electrical Stability

- Electrical stability is a relative value
- Electrical stability related to emulsion stability, wettability, %water, water droplet size, viscosity, temperature...
- Electrical stability of new mud will be low until sheared through the bit
- Check at 120° or 150 °F (65 °C)
- Meters
 - Operator ramped (old style) (reading is doubled)
 - Self ramping digital (read directly)

Retort Analysis

- Retort allows us to determine:
 - % Solids
 - % Oil or Synthetic fluid
 - % Water
 - Oil (or Synthetic) / Water Ratio
 - Salt content
- Use 50 ml retort for precision and accuracy since O/W is critical (10 & 20 ml)
- Watch for trends and major changes


Invert Emulsion Calculated Data

- Oil / Water Ratio (OWR)
 - Oil Fraction = % Oil X (100)
 Oil + % Water
 - Water Fraction = 100 Oil Fraction
 - Oil Fraction / Water Fraction = OWR
- Excess Lime (ppb lime) = Pom X 1.3

Titrations

- Standard titrations:
 - Alkalinity Pom (Psm)
 - Chlorides Cl⁻ (whole mud)
- Must use whole mud (2 cc)
 (filtrate is Oil/Synthetic fluid)
- Mix mud with solvent to break the emulsion
- Dilute sample with distilled water and add indicator.
- Titrate!

P_{om} (P_{sm}) (V_{SA}) - Color change



Courtesy of Fann Instrument Company

Chlorides (whole mud) - Color change

Calcium (whole mud) - Color change

Effects of Contaminants

Contaminant – Anything that causes undesirable changes in mud properties

Water-Based Drilling Fluids

Contamination

Major Contaminants of WBM

- Solids (Cuttings), especially clays
- Bicarbonate (HCO₃⁻)
- Carbonate $(CO_3^{=})$
- Sodium Chloride (NaCl)
- Cement
- Anhydrite (CaSO₄)
- Hydrogen Sulfide (H₂S)

Contamination Examples

Solids Contamination

Sample Daily Mud Check		
	Mud Pro	perties
Sample From	Flowline	Flowline
Time Sample Taken	06:00	09:45
Flowline Temperature (F)	120	125
Depth (ft)	8788	8999
Mud Weight (ppg)	14.1	14.4
Funnel Viscosity (sec/qt)	47	58
Plastic Viscosity (cP)	33	56
Yield Point (lbf/100ft2)	6	17
Gel Strength 10 sec/10 min (lbf/100 ft2)	6/10	4/32
Filtrate API (ml/30 min)	8	13
Filtrate HTHP (ml/30 min) @250F	17.6	22
API Cake Thickness (32nd inch)	2	4
Retort Solids Content (vol%)	16	20
Retort Liquid Content (Oil vol%/Water vol%)	0/84	0/80
Sand Content (vol%)	Tr	Tr
MBT (lb/bbl equiv)	3.5	5
pH (strip)	10	9.5
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.6	1.1
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.0/2.4	0.8/1.9
Chlorides (mg/L)	4,000	4,000
Total Hardness as Calcium (mg/L)	200	200

RC 3_15 65

Solids Contamination (Clay/Shale)

- Identification
 - Total Solids and Low-Gravity Solids (LGS) increase
 - MBT increases
 - Alkalinity (Pf and Mf) decreases
- > Treatment
 - Optimize or reconfigure Solids Control Equipment
 - Dilute with base fluid (water, produced brine)
 - Disperse with thinners/deflocculants (may need pH raised)
 - Add Fluid Loss Control product

Contamination Examples

Bicarbonate Contamination

Sample Daily Mud Check			
	Mud Prop	Mud Properties	
Sample From	Flowline	Flowline	
Time Sample Taken	06:00	09:45	
Flowline Temperature (F)	120	125	
Depth (ft)	8788	8999	
Mud Weight (ppg)	15	15	
Funnel Viscosity (sec/qt)	47	74	
Plastic Viscosity (cP)	33	55	
Yield Point (lbf/100ft2)	11	34	
Gel Strength 10 sec/10 min (lbf/100 ft2)	3/10	21/49	
Filtrate API (ml/30 min)	8	16.8	
Filtrate HTHP (ml/30 min) @250F	17.6	28	
API Cake Thickness (32nd inch)	2	4	
Retort Solids Content (vol%)	25	25	
Retort Liquid Content (Oil vol%/Water vol%)	0/75	0/75	
Sand Content (vol%)	Tr	Tr	
MBT (lb/bbl equiv)	4	4	
pH (strip)	10.5	8.8	
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.6	0.7	
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.2/3.1	1.1/17.4	
Chlorides (mg/L)	4,000	4,000	
Total Hardness as Calcium (mg/L)	200	0	

Bicarbonate Contamination

- Identification
 - No Calcium (Ca²⁺⁾
 - Pf is low
 - Mf is high
 - Fluid Loss increases
 - Gel Strength increases
- Treatment
 - Usually caused by over-treatment with sodium bicarbonate (NaHCO $_3$) prior to drilling cement or influx of CO $_2$
 - Maintain 150 to 200 mg/L total hardness in the filtrate to buffer the problem so that it does not reoccur. This is usually easy to obtain with lime treatments, so add lime (Ca(OH)₂) to pH 9.5 to 10.0. It may be necessary to supplement the lime with caustic soda (NaOH).
 - Add thinners to chemically disperse clays and provide better rheology control
 - Add water to offset dehydration

Contamination Examples

Carbonate Contamination

Sample Daily Mud Check		
	Mud Dec	anartias.
		perties
Sample From		Flowline
Time Sample Taken	06:00	09:45
Flowline Temperature (F)	120	125
Depth (ft)	8788	8999
Mud Weight (ppg)	15	15
Funnel Viscosity (sec/qt)	47	74
Plastic Viscosity (cP)	33	55
Yield Point (lbf/100ft2)	11	32
Gel Strength 10 sec/10 min (lbf/100 ft2)	4/11	21/43
Filtrate API (ml/30 min)	8	16.8
Filtrate HTHP (ml/30 min) @250F	17.6	28
API Cake Thickness (32nd inch)	2	4
Retort Solids Content (vol%)	25	25
Retort Liquid Content (Oil vol%/Water vol%)	0/75	0/75
Sand Content (vol%)	Tr	Tr
MBT (lb/bbl equiv)	4	4
pH (strip)	9.5	10.8
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.6	0.7
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.2/3.1	8/17.4
Chlorides (mg/L)	4,000	4,000
Total Hardness as Calcium (mg/L)	200	0

RC 3_15

Carbonate Contamination

Identification

- Gel strengths are high
- Fluid loss is high
- Alkalinity (Pf and Mf) is high
- No calcium most of the time

> Cause

- Problem may be induced through addition of excess soda ash to treat make-up water for removal of hardness
- Avoid over-treatment by controlling total hardness of filtrate between 150 and 200 mg/L
- Do not pre-treat system with large amounts of soda ash

Carbonate Contamination (Cont'd)

> Treatment

- Add gypsum, or gyp (CaSO₄ · 2H₂O), to remove carbonate by precipitating it as CaCO₃, and adjust pH to 9.5-10.5 with lime or caustic soda
- Monitor total lb/bbl of gyp added to the system. Too much $SO_4^=$ in system will cause viscosity problems (see Anhydrite Contamination)
- Add thinners as needed for chemical dispersion
- Add water to offset dehydration
- When acid gas continues to contaminate the fluid, the normal reaction is to add caustic soda (NaOH), thus forming CO₃⁼ and HCO₃⁻, depending on pH
- Lime and gyp can be added together to achieve the proper pH and to precipitate CaCO₃ from the system

Contamination Examples

Salt Contamination

Sample Daily Mud Check		
	Mud Pro	perties
Sample From	Flowline	Flowline
Time Sample Taken	06:00	09:45
Flowline Temperature (F)	120	125
Depth (ft)	8788	8999
Mud Weight (ppg)	14.6	14.7
Funnel Viscosity (sec/qt)	44	67
Plastic Viscosity (cP)	33	56
Yield Point (lbf/100ft2)	7	22
Gel Strength 10 sec/10 min (lbf/100 ft2)	4/8	13/18
Filtrate API (ml/30 min)	8	16.8
Filtrate HTHP (ml/30 min) @250F	17.6	38
API Cake Thickness (32nd inch)	2	6
Retort Solids Content (vol%)	20	23
Retort Liquid Content (Oil vol%/Water vol%)	0/80	0/77
Sand Content (vol%)	Tr	Tr
MBT (lb/bbl equiv)	4	4
pH (strip)	10	9
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.8	1.1
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.0/2.4	0.7/1.8
Chlorides (mg/L)	4,000	28,600
Total Hardness as Calcium (mg/L)	200	420

Salt (NaCl) Contamination

- Identification
 - API and HTHP Filtration (fluid loss) increase
 - pH drops
 - Alkalinity (Pf and Mf) drop
 - [Cl-] increases
 - Hardness ([Mg²⁺] and [Ca²⁺]) also increases if other salts are mixed with the NaCl
- Treatment
 - Treat with thinners to reduce viscosity, gel strength and yield point
 - Adjust pH with caustic soda
 - Add polymers for filtration (fluid loss) control
 - If the salt concentration is maintained, or the system is broken over to a saturated salt system, pre-hydrated bentonite or polymers must be used to maintain viscosity
 - If the clay solids content (LGS) of the fluid is too high, dilution with water may also be necessary.

73

Contamination Examples

Cement Contamination

Sample Daily Mud Check			
	Mud Pro	Mud Properties	
Sample From	Flowline	Flowline	
Time Sample Taken	06:00	09:45	
Flowline Temperature (F)	120	125	
Depth (ft)	8788	8999	
Mud Weight (ppg)	15	15	
Funnel Viscosity (sec/qt)	41	69	
Plastic Viscosity (cP)	32	39	
Yield Point (lbf/100ft2)	11	28	
Gel Strength 10 sec/10 min (lbf/100 ft2)	4/6	12/25	
Filtrate API (ml/30 min)	8	16.8	
Filtrate HTHP (ml/30 min) @250F	17.6	40	
API Cake Thickness (32nd inch)	2	4	
Retort Solids Content (vol%)	17	17	
Retort Liquid Content (Oil vol%/Water vol%)	0/83	0/83	
Sand Content (vol%)	0.5	0.5	
MBT (lb/bbl equiv)	4	4	
pH (strip)	9.5	11.8	
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.6	6.7	
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.2/3.1	5.1/5.8	
Chlorides (mg/L)	4,000	4,000	
Total Hardness as Calcium (mg/L)	80	480	

RC 3_15

Cement Contamination

Identification

- API and HTHP fluid loss increase
- pH is high
- Pm and Pf are high
- Calcium is high

> Treatment

- Add baking soda (sodium bicarbonate, or NaHCO₃) to precipitate calcium. Control total hardness of the filtrate between 150 and 200 mg/L to avoid over-treatment. Note: baking soda will reduce the pH.
- Add thinners for rheology control.
- Add water to offset dehydration, and barite to maintain mud weight.

Anhydrite Contamination

Sample Daily Mud Check		
	Mud Pro	operties
Sample From	Flowline	Flowline
Time Sample Taken	06:00	09:45
Flowline Temperature (F)	120	125
Depth (ft)	8788	8999
Mud Weight (ppg)	15	15
Funnel Viscosity (sec/qt)	41	61
Plastic Viscosity (cP)	32	39
Yield Point (lbf/100ft2)	11	37
Gel Strength 10 sec/10 min (lbf/100 ft2)	4/8	12/28
Filtrate API (ml/30 min)	8	16.8
Filtrate HTHP (ml/30 min) @250F	17.6	40
API Cake Thickness (32nd inch)	2	4
Retort Solids Content (vol%)	25	24
Retort Liquid Content (Oil vol%/Water vol%)	0/75	0/75
Sand Content (vol%)	Tr	Tr
MBT (lb/bbl equiv)	4	4
pH (strip)	10.9	8.5
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.6	0.7
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.2/3.1	0.2/11
Chlorides (mg/L)	4,000	4,000
Total Hardness as Calcium (mg/L)	80	800

Anhydrite Contamination

- Identification
 - API and HTHP fluid loss increase
 - pH decreases
 - Pm and Pf decrease
 - Calcium increases
- Treatment
 - A common method of drilling anhydrite formations is to adjust the pH to 9.5 and add thinners, while maintaining a low MBT. With this method, a gyp mud can be built and its fluid loss controlled with polymers.
 - It is usually uneconomical to treat calcium out of a heavily contaminated system, but it may be controlled by adding soda ash (Na₂CO₃) if pH < 9.5 or bicarb (NaHCO₃) if pH ≥ 9.5. After adding soda ash, a chemical dispersant is usually necessary to reduce viscosity and gel strength.

H₂S Contamination

Sample Daily Mud Check	
	Mud Properties
Sample From	Flowline Flowli
Time Sample Taken	06:00 09:4
Flowline Temperature (F)	120 125
Depth (ft)	8788 8999
Mud Weight (ppg)	15 15
Funnel Viscosity (sec/qt)	47 64
Plastic Viscosity (cP)	33 47
Yield Point (lbf/100ft2)	8 17
Gel Strength 10 sec/10 min (lbf/100 ft2)	4/11 17/2
Filtrate API (ml/30 min)	6 16.8
Filtrate HTHP (ml/30 min) @250F	14 24
API Cake Thickness (32nd inch)	2 4
Retort Solids Content (vol%)	25 25
Retort Liquid Content (Oil vol%/Water vol%)	0/75 0/75
Sand Content (vol%)	Tr Tr
MBT (lb/bbl equiv)	4 4
pH (strip)	10.5 8.5
Alkalinity Mud (Pm) (ml of N50 Sulf Acid/ml mud)	1.6 0.5
Alkalinity Filtrate (Pf/Mf) (ml of N50 Sulf Acid/ml mud)	1.2/3.1 0.1/0
Chlorides (mg/L)	4,000 4,00
Total Hardness as Calcium (mg/L)	200 0

H₂S Contamination

- Identification
 - H₂S gas in filtrate or mud
 - API and HTHP fluid loss increase
 - All viscosity parameters may increase
 - pH decreases
 - Alkalinity decreases
 - Calcium decreases a little
- > Treatment
 - Add Triazine or zinc carbonate (ZnCO₃):

$$ZnCO_3 + H_2S <=> ZnS + H_2CO_3$$

- Add starch or polymers to reduce fluid loss
- Add water for dehydration
- Add lime/caustic soda to adjust pH to > 10 and maintain Pf > 6

WBM Contamination

- Did you notice what properties increased in every example?
- <u>Physical properties</u> of the mud increased in all of these contamination examples
- Key to determining what kind of contamination

 analyze the chemical properties of the mud to
 narrow down on the specific type of
 contamination
- MBT level typically has large affect on contamination severity

Summary of Contaminant Effects & Treatment

Contam	inant	WT	FV	PV	YP	Gels	FL	pН	$P_{\mathbf{m}}$	P_f	M_{f}	Cl-	Ca2+	Solids	Treatment	
Cement			↑		1		1	↑		1	1	_	↑рН↓ 11.5		Bicarb, or SAPP, or thinner, bicarb and citric acid	
Gypsum anhydr			↑	ı	1		1	\rightarrow	\rightarrow	\downarrow	\rightarrow	ı	1		Caustic, dilution water and thinner, or soda ash (plus fluid- loss polymer)	
Salt			1	ı	1	1	1	\rightarrow	\rightarrow	\rightarrow	\rightarrow	1	ħ		Caustic, dilution water, thinner and fluid-loss polymer	
Carbona bicarbo			1	ı	1	↑	7	\rightarrow	\rightarrow	△	↑		\		pH <10.3: lime pH 10.3 to 11.3: lime and gyp pH >11.3: gyp	
H ₂ S			1		↑	↑	1	\rightarrow	\rightarrow	\rightarrow	\rightarrow		7		Caustic, lime and zinc source (zinc oxide)	
Solids	Old	7	7	7	_	7	_	_		_	_	_	_	1	Dilution water and solids-removal equipment	
Solids	New	7	7	7	7	7	7	7	7	×	Z	7	7	1	Dilution water, solids-removal equipment and thinner	

[↑] Increase ↓ Decrease — No change ZSlight increase ↓ Slight decrease

Additional Details of Treatments for Contaminants

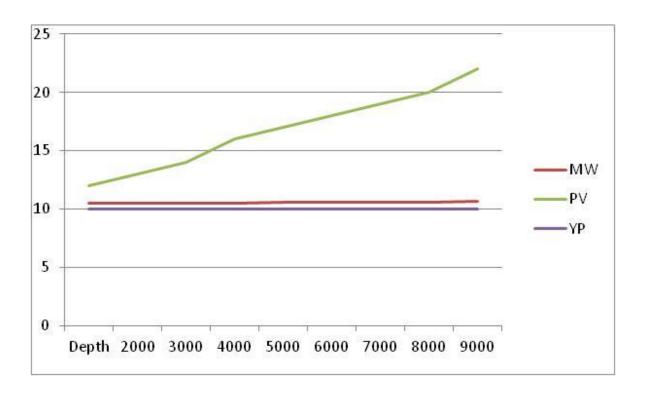
Contaminant	Contaminating Ion	Treatment	Treating Concentration (lb/bbl)
Carbon dioxide	Carbonate Bicarbonate	Gyp to reduce pH Lime to raise pH Lime to raise pH	mg/l x F _w x 0.00100 mg/l x F _w x 0.000432 mg/l x F _w x 0.00424
Gypsum and anhydrite	Calcium	Soda ash SAPP Sodium bicarbonate	mg/l x F _w x 0.000928 mg/l x F _w x 0.000971 mg/l x F _w x 0.00735
Lime or cement	Calcium and hydroxyl	Sodium bicarbonate SAPP Citric acid	lb/bbl excess lime x 1.135 lb/bbl excess lime x 1.150 lb/bbl excess lime x 1.893
Hard or seawater	Calcium and magnesium	Caustic soda	mg/l x F _w x 0.00116
Hydrogen sulfide	Sulfide (H ₂ S, HS ⁻ , S ²⁻)	Zinc oxide* plus sufficient caustic soda to maintain the pH above 10.5	mg/l x F _w x 0.00091

^{*}Other zinc compounds such as chelated zinc or zinc carbonate may also be used. An excess should always be maintained in the system. NOTES:

^{1.} Fw is the fractional % of water from retort.

^{2.} Excess lime = 0.26 $(P_M - (P_f \times F_w))$.

Non-Aqueous Drilling Fluids


Contamination

Major Contaminants of NADF

- Solids
- Salt Water
- Fresh Water
- CO₂

What contamination caused this?

Ultra-Fines Build-up

RC 3_15

Solids Contamination

- Identification
 - Total Solids increase
 - Viscosity parameters increase
 - ES changes
- Treatment
 - Optimize or reconfigure Solids Control Equipment
 - Add emulsifier and/or oil-wetting agent
 - Dilute with base fluid

Salt Water Contamination

Sample Daily Mud Check		
	Mud Pro	perties
Sample From	Day 1	Day 2
Flowline Temperature (F)	120	128
Depth (ft)	8788	8999
Mud Weight (ppg)	12	11.6
Funnel Viscosity (sec/qt)	65	97
Plastic Viscosity (cP)	32	53
Yield Point (lbf/100ft2)	18	29
Gel Strength 10 sec/10 min (lbf/100 ft2)	7/11	9/19
Filtrate HTHP (ml/30 min) @250F	4	6.5
Retort Oil Content (vol%)	54	47
Retor Water Content (vol%)	18	28
Retort Solids Content (vol%)	28	25
Alkalinity (Pom) (ml)	2.1	1.8
Chlorides (Clom) (mg/L)	38,000	27,000
Calcium (mg/L)	18,500	10,200
Electrical Stability (v)	485	136

RC 3_15

Saltwater Contamination

- Identification
 - O/W ratio decreases
 - Chlorides decrease
 - Viscosity parameters increase
 - ES decreases
 - HTHP Fluid Loss increases
 - Whole mud alkalinity (Pm) may drop
- Treatment
 - Add base fluid to adjust O/W ratio back to spec
 - Increase concentration of solute usually CaCl₂ in internal phase to raise Water Phase Salinity (WPS)
 - Add lime to adjust Pm upward
 - May need to add emulsifier

Fresh Water Contamination

Sample Daily Mud Check		
	Mud Pro	perties
Sample From	Day 1	Day 2
Flowline Temperature (F)	120	128
Depth (ft)	8788	8999
Mud Weight (ppg)	12	11.6
Funnel Viscosity (sec/qt)	65	97
Plastic Viscosity (cP)	32	53
Yield Point (lbf/100ft2)	18	29
Gel Strength 10 sec/10 min (lbf/100 ft2)	7/11	9/19
Filtrate HTHP (ml/30 min) @250F	4	6.5
Retort Oil Content (vol%)	54	47
Retor Water Content (vol%)	18	28
Retort Solids Content (vol%)	28	25
Alkalinity (Pom) (ml)	2.1	1.8
Chlorides (Clom) (mg/L)	38,000	18,200
Calcium (mg/L)	18,500	9,418
Electrical Stability (v)	485	136

Fresh Water Contamination

> Identification

- O/W ratio decreases
- Chlorides decrease substantially, along with Ca²⁺ (if CaCl₂ is used in internal phase)
- Viscosity parameters increase
- ES decreases
- HTHP Fluid Loss increases
- Whole mud alkalinity (Pm) may drop

> Treatment

- Add base fluid to adjust O/W ratio back to spec
- Add CaCl₂ to raise the Water Phase Salinity (WPS)
- Add lime to increase Pm
- May need to add emulsifier

CO₂ Contamination

Sample Daily Mud Check		
	Mud Pro	perties
Sample From	Day 1	Day 2
Flowline Temperature (F)	120	128
Depth (ft)	8788	8999
Mud Weight (ppg)	12	12
Funnel Viscosity (sec/qt)	65	66
Plastic Viscosity (cP)	32	34
Yield Point (lbf/100ft2)	18	19
Gel Strength 10 sec/10 min (lbf/100 ft2)	7/11	7/11
Filtrate HTHP (ml/30 min) @250F	4	6.5
Retort Oil Content (vol%)	54	54
Retor Water Content (vol%)	18	18
Retort Solids Content (vol%)	28	28
Alkalinity (Pom) (ml)	2.1	0
Chlorides (Clom) (mg/L)	38,000	38,000
Calcium (mg/L)	18,500	18,400
Electrical Stability (v)	485	319

RC 3_15

CO₂ Contamination

- > Identification
 - Whole mud alkalinity (Pom) (excess lime) drops to zero
 - ES decreases
 - HTHP Fluid Loss increases
- > Treatment
 - Add lime to increase Pom

Insufficient Viscosity

Cause	Treatment
Undertreatment of viscosifier	Add organophilic clay
Lack of proper particle size distribution	Add rheology modifiers
Low Water Content	Add water (brine)
New mud, lack of shear	Shear through bit or shear unit
Gas stripping	Increase mud weight
	Add wetting agent
	Add primary emulsifier and lime

Fycose	W		
Excess	ive v	iscos	ILY

Cause	Treatment
High water content (saltwater flow)	Dilute with base fluid
	Add primary emulsifier and lime
	Add wetting agent
	Add OBM thinner/dispersant
Incorporated drill solids	
1. High solids (% volume)	Centrifuge/solids control
	Use dilution
	Add wetting agent
	Add OBM thinner/dispersant
2. Fines solids problem	Centrifuge/solids control
	Use dilution
	Add wetting agent
	Add OBM thinner/dispersant
3. Water-wet solids	Add wetting agent and primary emulsifier
	Decrease water content
	Reduce solids content
High-temperature instabililty	Add wetting agent and primary emulsifier
	Decrease water content
	Reduce solids content
Acid gases	Add lime (conventional system)
	Add primary emulsifier and wetting agent
	Increase mud weight
	If H2S, add H2S scavenger
Overtreatment	Dilute with base fluid

Increase in HTHP Fluid Loss

Cause	Treatment
Weak emulsion	Add primary emulsifier
	Add lime (conventional system)
Lack of proper particle size distribution	Add fluid loss additive
	Add organophilic Clay
	Add weight material or bridging agent
High-temperature instability	Add primary emulsifier and wetting agent
	Add lime (conventional system)
	Add fluid loss additive

Water in HTHP Filtrate

Cause	Treatment
Weak emulsion	Add primary emulsifier and wetting agent
	Add lime (conventional system)
High-temperature instability	Add primary emulsifier
	Add lime (conventional system)
	Add fluid loss additive

Water-Wet Solids

Cause	Treatment
Super-saturation	Add emulsifier and wetting agent
	Add OBM thinner/dispersant
	Add water sparingly
Excessive solids	Use soids control and dilution with base fluid
	Adding wetting agent
	Add OBM thinner/dispersant
Undertreatment	Add primary emulsifier and wetting agent
	Add OBM thinner/dispersant

Shaker Screen Blinding

Cause	Treatment
Water-wet solids	Add wetting agent
	Add primary emulsifier
	Add OBM thinner/dispersant

Water Flow

Cause	Treatment
Decrease in OWR (water intrusion)	Increase mud weight
Decrease in mud weight	Increase mud weight
	Add primary emulsifier and wetting agent
	Add lime (conventional system)
	Add base fluid to adust OWR
	Add salt to adjust brine salinity

RC 3_15

Carbon Dioxide Contamination

Indicator	Treatment
P _{OM} decrease	Increase mud weight
	Add lime
Rheology increase	Add primary emulsifier and wetting agent
	Add base fluid for dilution
	Increase mud weight
	Add lime

Hydrogen Sulfide Contamination

.,,,		
Indicator	Treatment	
P _{OM} decrease	Increase mud weight	
or Foul odor	Add lime	
or Mud turns black	Add primary emulsifier and wetting agent	
or Drill pipe turns black	Add H ₂ S scavenger	

