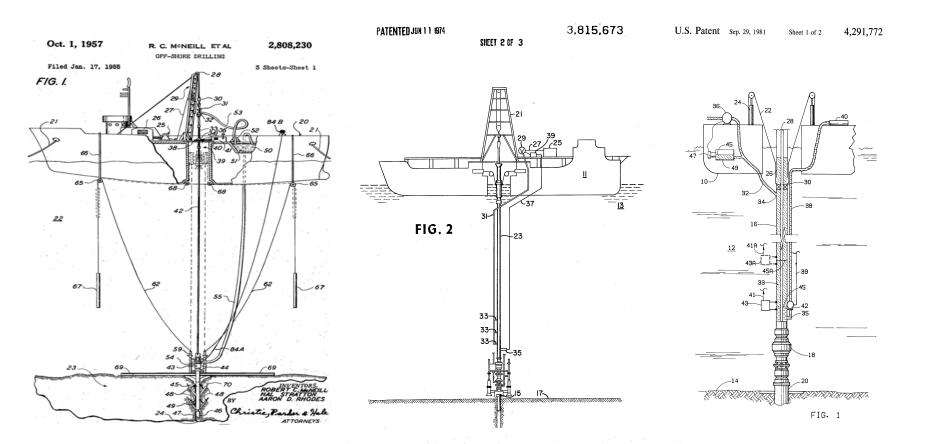
Your Next Generation Driller

Future MPD Opportunities a Drilling Contractor's Perspective

Transocean

- Background
- Transocean's past MPD Efforts
- Recent Experience
- Current Initiatives
- Future Opportunities



MPD - Why do we need it?

- Common Drivers
 - Improve HSE
 - Mitigate Well Construction Challenges
 - Mitigate Operational Risk
 - Improve Performance
 - Create Opportunities

Not a new idea

"Riserless" mud recovery

Gas Lifted Riser

Pumped Riser Return

Transocean's past MPD Efforts

BAKER HUGHES

Transocean's past MPD Efforts – Benign Environments

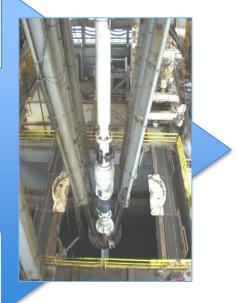

Sedco 601 SBOP (2004) - PMCD

Sedco 601 RiserCap[™] (2006) - PMCD

DWF (2007) Concentric Casing

Actinia (2008) Concentric Casing

Actinia (2011)



Transocean's past Efforts – moving towards environment independent closed circulating systems

Concentric riser (DP) (US patent: 6,273,193)

2007

Integrated RCD (Moored) Above Tension Ring Integrated RCD (DP) Below Tension Ring

2008 -09

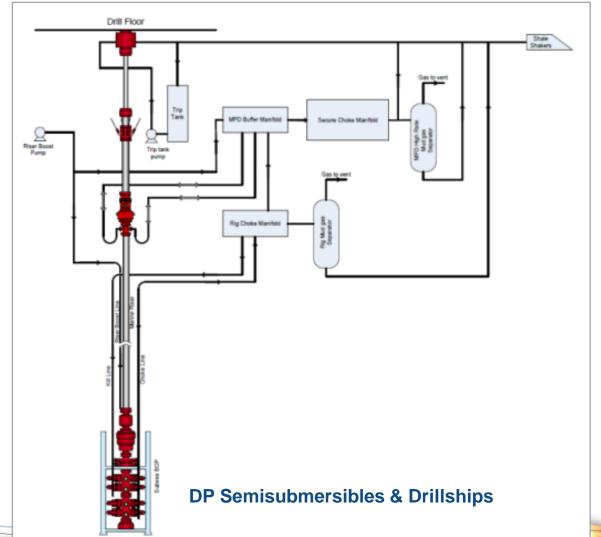
2009

Concentric riser (DP) Above Tension Ring (US Patent 7,866,399)

2008-09

Transocean 's involvement from the very beginning

From Land and Jackup RCDs to custom build Offshore RCDs



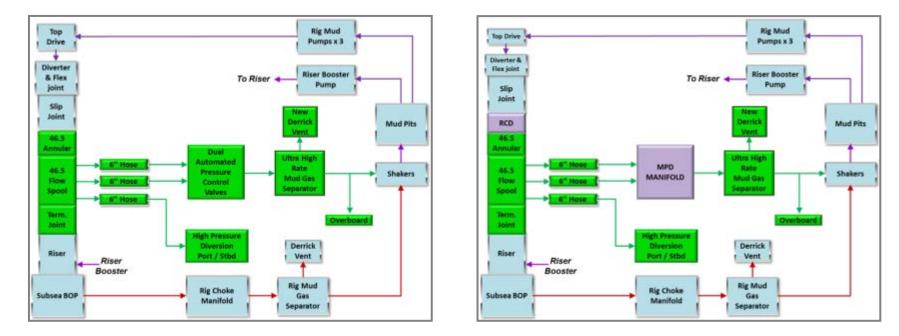
Preferred MPD equipment configuration

- Surface Pressure control
 - RCD
 - Annular
 - Flow Spool
 - Riser PRV / Vent Line
 - Redundant Flow Lines
 - MPD/Drilling manifold
 - Dedicated Mud Gas Separator
- Complete Annulus return

ansocear

- Via existing rig slip joint
- Via multi purpose MPD pup joint

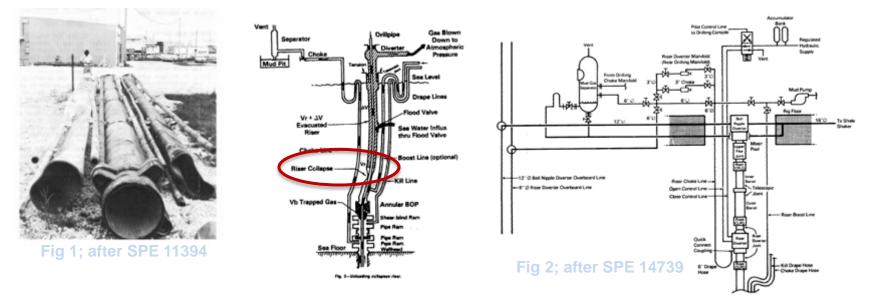
	Rig Name	Rig Type	Location	Customer	Year	Application	Status	11
	Trident 8	Jack Up	Angola	Cabinda Gulf	2003	PMCD	Completed	
	Sedco 601	Semi Sub	Indonesia	Santos	2004	PMCD w/ Surface BOP	Completed	
	Sedco 601	Semi Sub	Indonesia	Santos	2005 - 2006	PMCD w/ Risercap™	Completed	
(D	Roger W. Mowell	Jack Up	Malaysia	Talisman	2006 - 2007	СВНР	Completed	
Experience	Constellation II	Jack Up	Egypt	BP	2007	CBHP, HPHT	Completed	
ler	High Island VII	Jack Up	Gabon	Total	2007	CBHP, HPHT	Completed	
eri	Deepwater Frontier	DP Drillship	India	Reliance	2007	CBHP, Concentric Riser	Completed	
d X	Actinia	Semi Sub	India	Reliance	2008	CBHP, Concentric Riser	Completed	
ш	Arctic III	Semi Sub	Libya	ENI	2008 - 2009	ECD, HPHT, Reconfigurable Riser	Completed	
PD & RGH	Harvey H. Ward	Jack Up	Malaysia	Talisman	2009	СВНР	Completed	
	Shelf Explorer	Jack Up	Malaysia	Talisman	2009	СВНР	Completed	
	Trident IX	Jack Up	Indonesia	Pearl	2010	UBD (Low Head Drilling)	Completed	
	Sedco 601	Semi Sub	Malaysia	Petronas	2010	СВНР	Completed	
	GSF Explorer	DP Drillship	Indonesia	MSEC	2010 - 2012	CBHP, PMCD, Riser Degassing	Completed	
ž	GSF Rig 135	Semi Sub	Nigeria	Addax	2011 - 2012	CBHP, HPHT	Completed	
C	Actinia	Semi Sub	Malaysia	Petronas	2011 - 2012	PMCD w/Risercap™	Completed	
Transocean MPD	Monarch	Jack Up	Demark	Maersk	2011 - 2012	СВНР	Completed	
	Marianas	Semi Sub	Ghana	ENI	2012	CBHP, HP; EKD/CC	Completed	
	HH Ward	Jack Up	Malaysia	Petronas	2012	PMCD	Completed	
	Compact Driller	Jack Up	Thailand	Chevron	2012	CBHP / Re-entry	Completed	
	Monarch	Jack Up	Denmark	Maersk	2012 - 2013	СВНР	Completed	
	Constellation 1	Jack Up	Indonesia	Total	2013 - 2014	PMCD, EKD	Completed	
	MG Hulme	Semi Sub	Malaysia	Petronas	2015	CBHP, PMCD	Completed	



Ē

Current Efforts - Riser Gas Handling and MPD

Riser Gas Handling

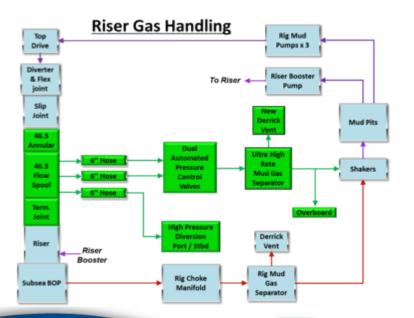

RGH equipped rig has 90% of equipment needed for MPD

Riser Gas Handling - Previous Systems

RGH systems are not new

The first systems were developed in the early 1980's.

The motivation for these early systems was to prevent riser collapse.


RGH System Design Basis

Gas Influx volume System Back Pressure range

- := 100bbls (above BOP)
- := 250psi 750psi (in RGH mode)

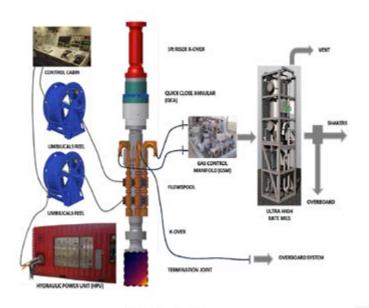
Gas migration velocity Liquid rate Design Safety Factor Design Liquid rate Liquid Density range

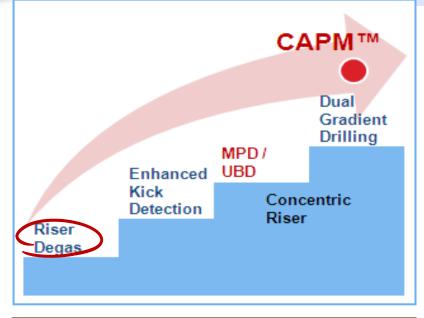
RGH reaction time

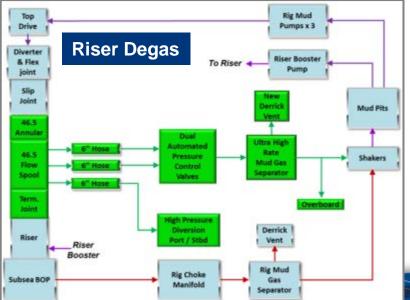
Transocean

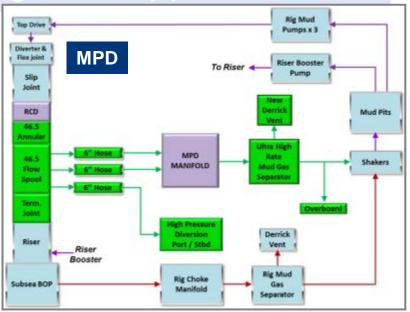
:= ~ 8,900 ft./hr (~149 ft/min) := ~ 2,400 gpm := 1.25 := ~ 3,000 gpm := 8.56 ppg (SW) - 18 ppg

:= <5s <=15s




Figure 2: Overview of main components

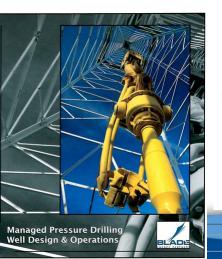

RGH Quick closing annular

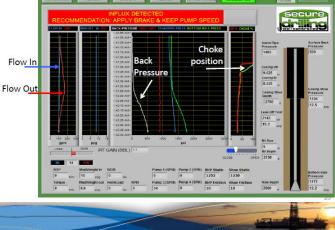


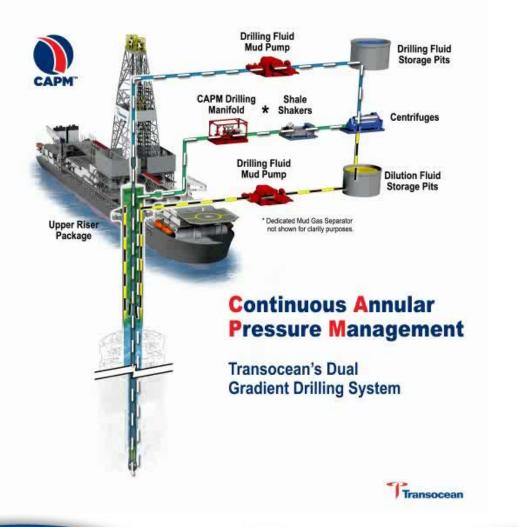


Current Efforts – Integrated Approach

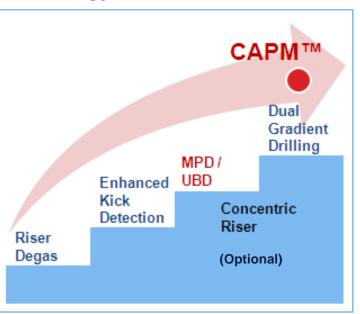
MPD Operational Considerations


• HAZID & HAZOP


• Procedures


- MPD Equipment Install & Remove Procedures
- MPD Operational Procedures
- MPD Contingency
 Procedures
- MPD Project Specific
 Training
- Lessons Learned

socear


		Volume Gain	<surface back="" pressure<br="">plus 150psi</surface>	>Surface back pressure plus 150psi <back limit<br="" pressure="">(800psi)</back>	>Back pressure limit (800psi)
Influx indicators	No influx	0	None. Continue drilling	Stop drilling, Increase back pressure, pump rate, mud weight, or a combination of all. circulate out any influx prior to resuming operations	Stop drilling, shut in well on rig BOP's and evaluate next action
	Operating Limit	0 - 3bbls	Stop drilling, Increase back pressure, pump rate, mud weight, or a combination of all. circulate out any influx prior to resuming operations	Stop drilling, Increase back pressure, pump rate, mud weight, or a combination of all. circulate out any influx prior to resuming operations	Stop drilling, shut in well on rig BOP's and evaluate next action
	< Planned Limit	3 - 5bbls	Stop drilling. Increase back pressure, pump rate, mud weight or a combination of all, circulate out any influx prior to resuming operations.	Stop drilling, shut in well on rig BOP's and evaluate next action	Stop drilling, shut in well on rig BOP's and evaluate next action
	≥ Planned Limit	> 5bbls	Stop drilling, shut in well on rig BOP's and evaluate next action	Stop drilling, shut in well on rig BOP's and evaluate next action	Stop drilling, shut in well on rig BOP's and evaluate next action

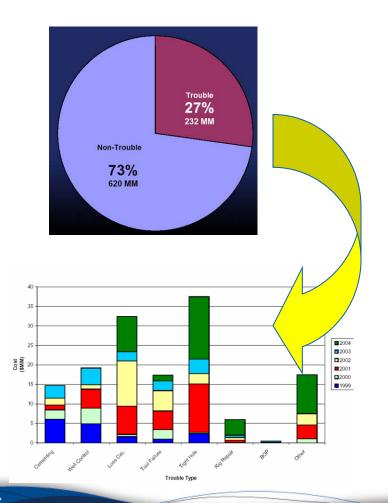
Technology Evolution

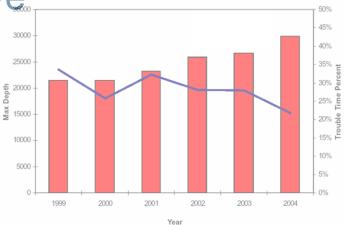
MPD = Managed Pressure Drilling UBD = Under Balanced Drilling

How do we encourage broader adoption of MPD methods

Are the objectives of the Technology Development Effort

Aligned


To an effective Technology Development Strategy?

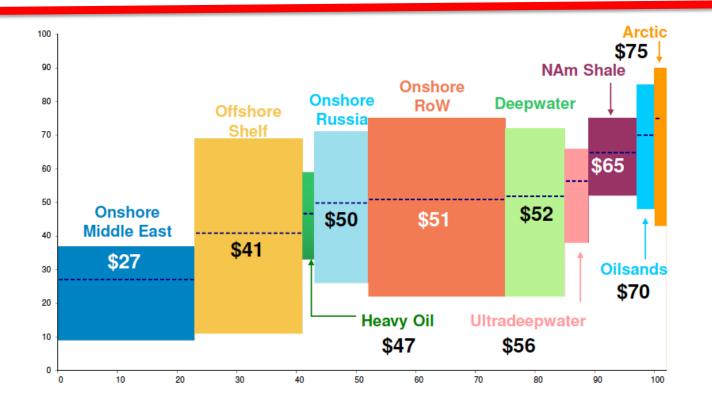

What constitutes an effective Technology Development Strategy? **Technical** Expertise Adequate Customer Insight Resources Technolog Development Strategy Sustainable Adequate **Business** Funding Model

Transocean

Operational Efficiency - One Operator's Perspective

socear

Approximately 25% total NPT Approximately 27% total Cost

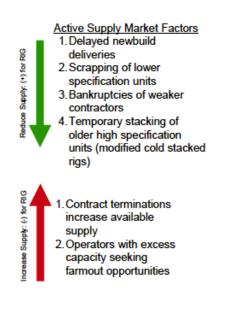

232 million dollars NPT cost in 6 yrs

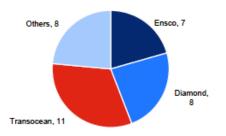
This is only in the GOM

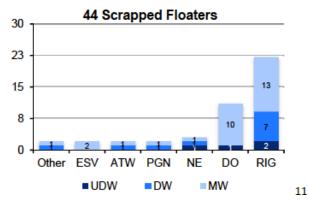
Its Primarily WB stability related

And its not unique

Market Environment

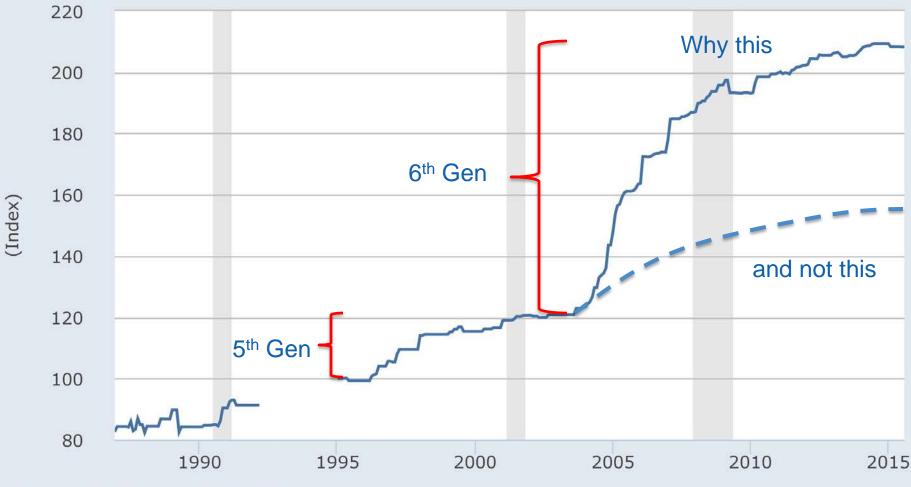

(1) Average IEA crude oil import price Source: Morgan Staley Equity Research


Offshore Rig Market


All Floaters - Worldwide 350 300 250 200 150 100 Existing Contracts 📖 Options 50 Possibles Requirements Sipply Not of retired beiter latinetophia beiterto fell- Net of refired, potential refired and dormant (Active Supply) Adve Supply 0 M Fearnley Offshore ©2015

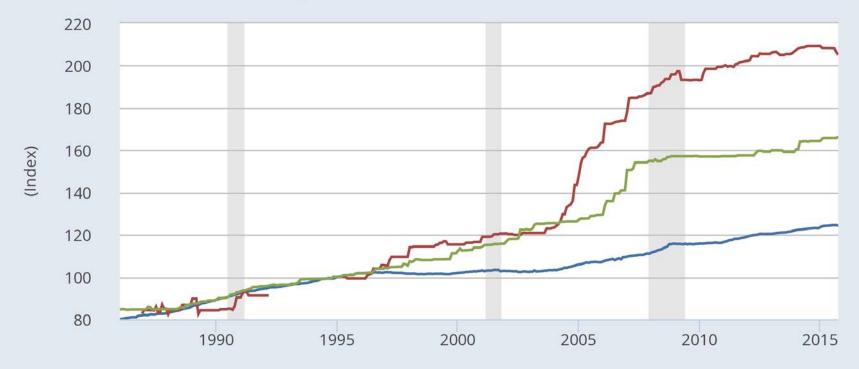
Contract Status & Expected Demand 2011-2018

34 Cold Stacked Floaters

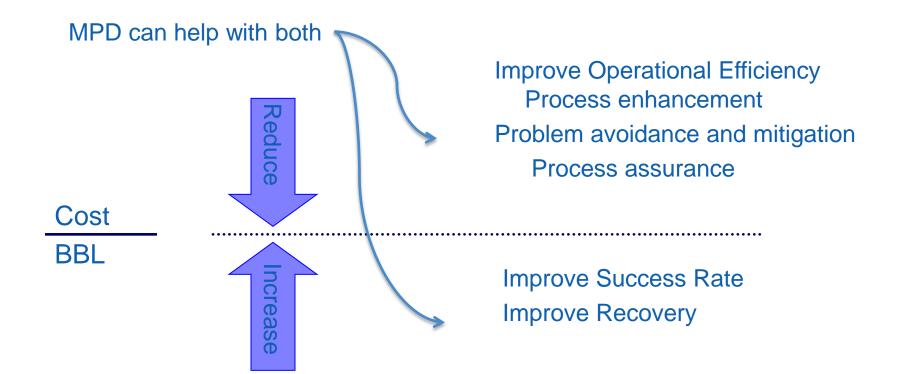


 Producer Price Index by Industry: Oil and Gas Field Machinery and Equipment Manufacturing: Other Oil and Gas Field Drilling Machinery and Equipment, 1995-01=100

Source: US. Bureau of Labor Statistics


FRED *×*

Shaded areas indicate US recessions - 2015 research.stlouisfed.org


cost evolution 1985 - 2015,

FRED *×*

- Producer Price Index by Commodity for Finished Goods: Capital Equipment, 1995-01=100
- Producer Price Index by Industry: Oil and Gas Field Machinery and Equipment Manufacturing: Other Oil and Gas Field Drilling Machinery and Equipment, 1995-01=100
- Producer Price Index by Industry: Ship Building and Repairing: Ship Repair, Nonmilitary, 1995-01=100

Business Driver - Improving Capital Efficiency

However there are challenges

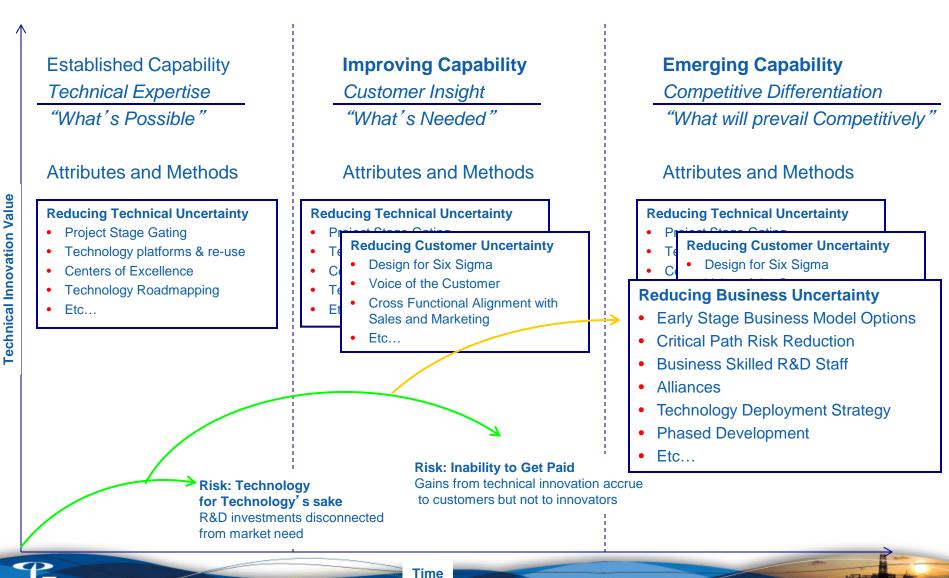
- Problem Diversity
 - Diversity of regions, fields / challenges and working relationships makes uniform approach to Technology based solution deployment difficult.

No Universal Single Solution

- Lack of focus
 - Diversity of Technical challenges and many potential solutions results in lack of focus and potentially waste of resources

e.g. Wide variety of MPD & Dual Gradient initiatives

What we want


Alignment

Operator	Contractor
🏷 Predictability	& Utilization
🗞 Reserves	🄄 Backlog
🄄 Minimal Cost	🗞 Adequate Dayrates
🄄 Minimal Risk	🄄 Minimal Risk
🗞 Sustainable ROC	E 🤄 Sustainable ROCE

Reduction of uncertainty

Technology Development Strategy

er: Research & Technology Executive Council, Embedding Competitive Advantage in the R&D Pipeline

Concluding Remarks

- Advances in the management of Technology R&D have ensured that the petroleum industry can efficiently deliver these technologies
- Challenges occur when the technology is not simply a "drop in"
- Integrating and commercializing technology often fails as a consequence of an inappropriate business framework / model preventing broad commercial adoption of new technologies, resulting in a de facto
 "do nothing" strategy
- Accepting this strategy has an opportunity cost equivalent to foregone potential improvements in cost and risk reduction afforded by technology.

In effect the industry "pays" for Technical Innovation whether it benefits from it or not

The Pace of Technology Development

iPad Jan 2010

Transocean

TelePresence 2007

Now, What we really want!!! **Operator's View** Contractor's View

