

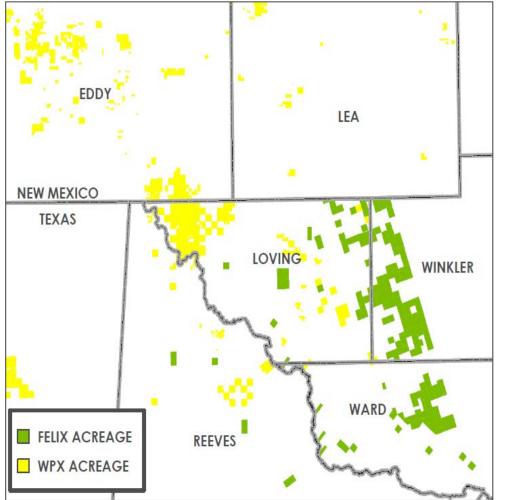
February 26, 2020

Luke McDougal - Engineering Team Lead

WPXENERGY®

Agenda

- WPX Overview
- Three-Mile Design Considerations
- Execution
- ► Q&A



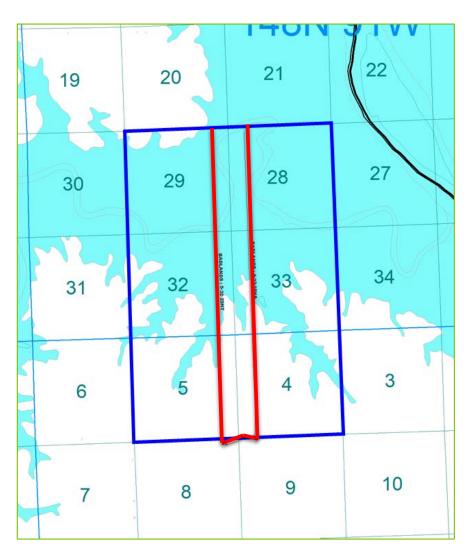
WPX Asset Overview

Delaware Basin


> ~185,000 Net Acres

Williston Basin

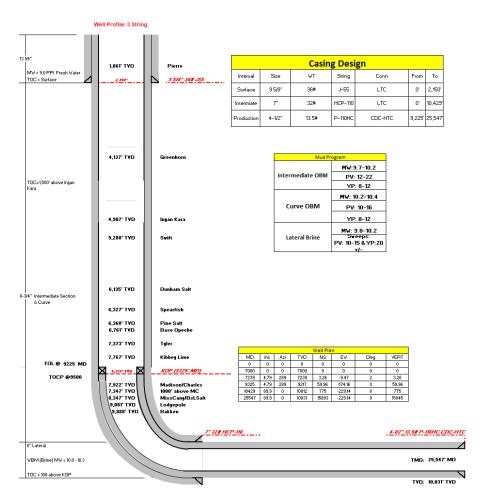
> ~85,000 Net Acres



Why 3-Mile Laterals

- Surface location mitigation
 - ▶ Leases underneath lake
 - ▶ Terrain limitations
 - Lease line wells

Lease Line Well



Two Well Pad under Lake Sakakawea

3-Mile Design Considerations

3 Mile WBD

Design Considerations

Well plan

- ▶ T&D
 - Wellbore profile
 - Buckling

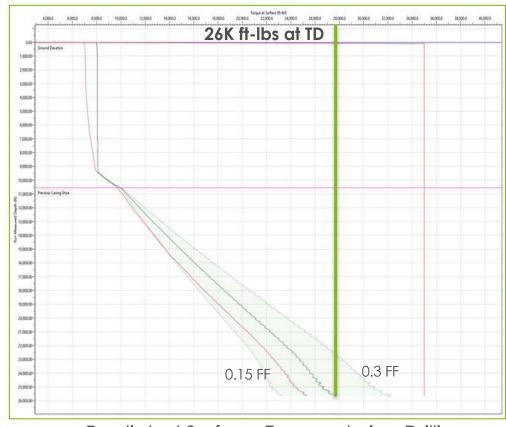
Fluid design

- Lube/Hole Cleaning
- Hydraulics
 - ECD's throughout the lateral

BHA Design

- ▶ 1.25* Bend selection in tangent
- Stabilization
- Reamers
- DP Selection

Liner Design


- Shoe track
- Liner Hanger

Rig Specifications

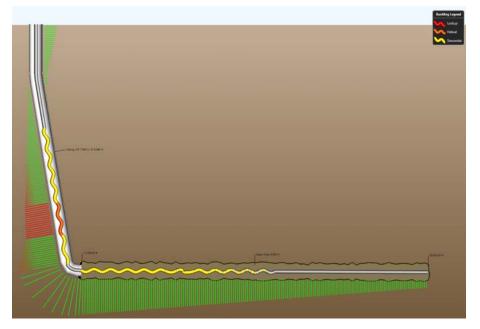
- Pump liners
- Rack back capacity
- Batch Drill vs Whole Drill

Design Considerations – T&D

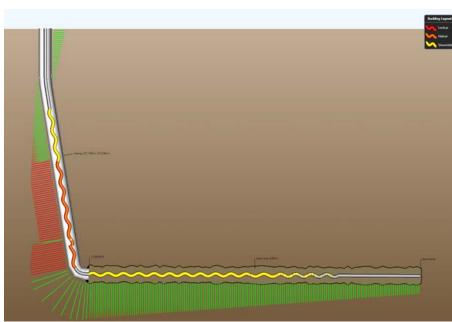
4,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.00
-5,000.

Predicted Surface Torque during Drilling

Torque Along the Drillstring at TD


- Modeled torque shows 26,000 ft-lbs at TD
 - ▶ .15 .3 OH-FF modeled
 - ▶ Real-time showed ~.21

Modeled torque used to understand rotation of liner to bottom (if needed)



Design Considerations – Buckling

4 ½" Drillpipe

4" Drillpipe

	Stress Failure			Buckling Limits			J.	Measured	Stretch (ft)				Rotary	Windup	Windup	Axial	Surface Neutral
Operation	Fatigue	90% Yield	100% Yield	Sinusoidal	Helical	Lockup	Failt	Weight	Mechanical	Ballooning	Thermal	Total	Table Torque (ft-lbf)	With Torque (revs)	Without Torque (revs)	Stress = 0 [From TD] (ft)	Point [From TD] (ft)
Tripping In				×	×			106.0	-7.89	0.65	33.84	26.60	0.0	0.0	0.0	21,553.72	0.00
Rotating On Bottom		İ		×	×		×		-0.42	0.65	33.84	34.07	24,993.9	48.1	27.4	17,386.70	17,316.86
Slide Drilling				×	×				13.67	0.65	33.84	20.82	4,000.0	10.3	0.0	24,263.00	26,391.15

	Stress Failure			Buckling Limits			g Measured		Stretch (ft)			Rotary	Windup	Windup	Axial	Surface Neutral	
Operation	Fatigue	90% Yield	100% Yield	Sinusoidal	Helical	Lockup	<u>a</u>	Measured Weight (kip)	Mechanical	Ballooning	Thermal	Total	Table Torque (ft-lbf)	With Torque (revs)		Stress = 0 [From TD] (ft)	Point
Tripping In				×	×			118.3	-6.05	0.87	33.68	28.50	0.0	0.0	0.0	20,842.71	0.00
Rotating On Bottom				×	×		×		0.51	0.87	33.68	35.05	20,933.1	62.6	31.8	17,386.70	17,044.26
Slide Drilling		П		×	×				-14.17	0.87	33.68	20.37	4,000.0	15.4	0.0	25,221.02	26,735.00

- 4 ½" Drillpipe improves:
 - Helical/Sinusoidal Buckling
 - Rotating on Bottom Weight
 - Slide Drilling Weight
 - Torque Capacity

Design Considerations – Drillpipe Selection

4" 14 PPF XT39

Pipe Body:					
	Nominal 100% RBW	95% RBW	Ultra Class 90% RBW	Premium 80% RBW	
OD (in):	4.000	3.967	3.934	3.868	
Wall Thickness (in):	0.330	0.314	0.297	0.264	
Nominal ID (in):	3.340	3.340	3.340	3.340	
Tensile Strength (lbs):	513,645	485,769	458,124	403,526	
Torsional Strength (ft-lbs):	41,918	39,586	37,281	32,752	
Burst Capacity (psi):	19,491	21,161	20,048	17,820	
Collapse Capacity (psi):	20,141	18,604	17,042	13,836	

Notes: Body properties are calculated based on uniform OD and wall thickness. Burst capacity for Nominal (100% RBW) based on 87.5% RBW per API.

Connection: XT39

TJ OD (in):4.875 TJ ID (in):2.688

MYS (ksi): 120 Maximum MUT is recommended (unless stated). Lower than

maximum MUT should only be used when MUT is limited by rig equipment or connection tensile. Lower than minimum MUT should never be used.

Maximum MUT (ft-lbs): (21,200)

Tension at Shoulder Separation @ Max MUT (lbs): Tensile Limited Tension at Connection Yield @ Max MUT (lbs): 553,300

Minimum MUT (ft-lbs): 17,700 Tension at Shoulder Separation @ Min MUT (lbs): 647,200

Tension at Connection Yield @ Min MUT (lbs): 662,200

Tool Joint Torsional Strength (ft-lbs): 35,300 Tool Joint Tensile Strength (lbs): 662,200

XT39 is a trademark of NOV Grant Prideco.

Note: MUT values are based on a friction factor of 1.0. There is no published pressure rating for this connection.

4 ½" 16.6 PPF DELTA 425

Pipe Body:					
100000000000000000000000000000000000000	Nominal 100% RBW	95% RBW	Ultra Class 90% RBW	Premium 80% RBW	
OD (in):	4.500	4.466	4.433	4.365	
Wall Thickness (in):	0.337	0.320	0.303	0.270	
Nominal ID (in):	3.826	3.826	3.826	3.826	
Tensile Strength (lbs):	595,004	562,966	531,168	468,296	
Torsional Strength (ft-lbs):	55,453	52,405	49,389	43,450	
Burst Capacity (psi):	17,693	19,209	18,198	16,176	
Collapse Capacity (psi):	16,773	15,354	13,913	10,964	

Notes: Body properties are calculated based on uniform OD and wall thickness. Burst capacity for Nominal (100% RBW) based on 87.5% RBW per API.

Connection: Delta 425

TJ OD (in):5.375

TJ ID (in):3.000 MYS (ksi): 130

never be used.

Maximum MUT is recommended (unless stated). Lower than maximum MUT should only be used when MUT is limited by rig equipment or connection tensile.

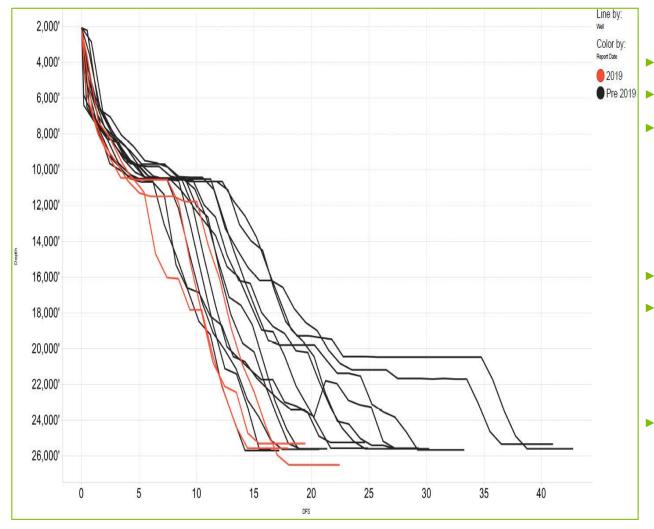
Lower than minimum MUT should

Maximum MUT (ft-lbs): (35,000) Tension at Shoulder Separation @ Max MUT (lbs): Tensile Limited

Tension at Connection Yield @ Max MUT (lbs): 482,858

Minimum MUT (ft-lbs): 34,800

Tension at Shoulder Separation @ Min MUT (lbs): Tensile Limited Tension at Connection Yield @ Min MUT (lbs): 482,858


MUT values are based on a friction factor of 1.15. A copper-based thread compound with a friction factor of 1.15 must be used to achieve the MUT values for this connection.

> Tool Joint Torsional Strength (ft-lbs): 49,748 Tool Joint Tensile Strength (lbs): 786,353

Delta 425 is a trademark of NOV Grant Prideco.

Execution

Days from Spud:

- **2015-16:** 26.8
- **2019:** 19.94
- Modeling is a necessity
- 100% success on liner runs
- 4 ½" Drillpipe
 - Less buckling
 - Higher torque capacity
 - Better hole cleaning (AV's)
 - More available WOB
- ▶ 100% conventional assemblies
- 2020:
 - 9 wells in the schedule
 - Currently batch setting on a 5 well pad
- ► Future Opportunities:
 - BHA design evolution
 - Eccentric reamers
 - Drillpipe configuration
 - Permian applications?

Questions?

