AADE-20-FTCE-025

Zinc Ammonium Carbonate for Controlling Hydrogen Sulfide Gas During Drilling

Christopher Cornetto and Richard Bennett, BYK USA Inc.

Copyright 2020, AADE

This paper was prepared for presentation at the 2020 AADE Fluids Technical Conference and Exhibition held at the Marriott Marquis, Houston, Texas, April 14-15, 2020. This conference is sponsored by the American Association of Drilling Engineers. The information presented in this paper does not reflect any position, claim or endorsement made or implied by the American Association of Drilling Engineers, their officers or members. Questions concerning the content of this paper should be directed to the individual(s) listed as author(s) of this work.

Abstract

An approach to controlling hydrogen sulfide gas is presented that utilizes zinc ammonium carbonate as the scavenger. Results are compared to standard hydrogen sulfide scavenger chemistries used in the drilling process.

A low solids water-based mud containing API Bentonite, xanthan gum, and lignite was created as a basis for evaluation. The pH of the formulation was adjusted to 10.5. The hydrogen sulfide scavengers were added to the formulation and mixed for one hour. Due to the dangers of handling hydrogen sulfide gas in the lab, sodium sulfide nonahydrate was used as a substitute. Samples were hot rolled for five hours at 150 degrees Fahrenheit. Filtrate was collected using the API fluid loss method and analyzed via Garrett Gas Train to determine the effectiveness of the scavengers.

The sodium sulfide nonahydrate was added to the mud base at 5.75 lb/bbl for testing. A mud not containing a scavenger was used as the baseline for the testing. The results of the testing indicate that zinc ammonium carbonate is an extremely effective scavenger when compared on an as-is basis to triazine, a scavenger commonly used in the industry today. Zinc ammonium carbonate at 1 lb/bbl virtually eliminated the presence of sodium sulfide in the filtrate water, removing 99.9% of the sodium sulfide present. At the same dose rate, triazine only removed 63% of the sodium sulfide present.

The study introduces another very effective and efficient alternative that can be used in controlling hydrogen sulfide for the protection of personnel and assets.

Introduction

Drilling for hydrocarbons in areas that contain hydrogen sulfide (H₂S) requires care and planning to ensure the safety of rig personnel and protection of assets.

 H_2S gas is an extremely toxic gas that can cause immediate death if present at levels as low as 1,000 parts per million (ppm). Detection levels on rigs in excess of 10 ppm are considered actionable emergencies. Table 1 shows the shortterm symptoms and effects of H_2S gas exposure as defined by the Occupational Safety and Health Administration (OSHA). H_2S is also extremely corrosive to most metals and can cause cracking in drill pipes and tubing and can also destroy testing tools and wirelines (Alkamil et al. 2018). H_2S encountered when drilling is naturally formed by the thermal conversion of decayed organic matter (kerogen) that is trapped in sedimentary rocks. High-sulfur kerogens release hydrogen sulfide during their decomposition which is trapped in oil and gas reservoirs until they are encountered during the drilling process (H_2S in Oil Industry. 2017).

When drilling in H_2S bearing formations, careful planning is required. Special consideration must be paid to personnel safety, drilling fluids, tubulars, blowout preventers, onsite equipment and H_2S scavengers.

 H_2S scavengers are added to drilling fluids when drilling in areas known to contain H_2S . Typically, H_2S scavengers are used in water-based drilling fluids (WBM) but are sometimes used in oil-based drilling fluids (OBM) as well.

The focus of this paper will be on a new H_2S scavenger based on zinc ammonium carbonate (ZAC).

Concentration (ppm)	Symptoms/Effects
0.00011-0.00033	Typical background
	concentrations
0.01-1.5	Odor threshold (rotten egg smell).
2-5	Prolonged exposure may cause
	nausea, tearing of the eyes,
	headaches or loss of sleep.
	Airway problems may occur in
	asthma sufferers.
20	Possible fatigue, loss of appetite,
	headaches, poor memory and
	dizziness.
50-100	Slight conjunctivitis and
	respiratory tract irritation after 1
	hour of exposure. May cause
	digestive problems and loss of
	appetite.
100	Coughing, eye irritation, loss of
	smell after 2-15 minutes.
	Drowsiness after 15-30 minutes.
	Throat irritation after 1 hour.
	Symptoms will gradually increase
	with prolonged exposure. Death

Table 1. OSHA defined H₂S gas exposure symptoms.

	possible after 48 hours of
	exposure.
100-150	Loss of smell (olfactory fatigue or paralysis).
200-300	Severe conjunctivitis and
	respiratory tract irritation after 1
	hour. Pulmonary edema may
	occur with prolonged exposure.
500-700	Staggering, collapse in 5 minutes.
	Serious eye damage in 30
	minutes. Death after 30-60
	minutes.
700-1,000	Rapid unconsciousness within 1-2
	breaths. Death within minutes.
1,000-2,000	Near instant death.

Scavenging Mechanism and Benchmarks

BYK has developed a 26% active, zinc-based liquid H_2S scavenger. The liquid material is based on zinc ammonium carbonate which precipitates hydrogen sulfide into zinc sulfide. Figure 1 illustrates the reaction that takes place between the ZAC and the H_2S .

The most likely species of zinc ammonium carbonate is $Zn(NH_3)_2(CO_3)_2$. This solution will readily react with the hydrogen sulfide to form the insoluble precipitate, zinc sulfide as shown in Figure 1.

 $Zn + H_2S \rightarrow ZnS \; (\downarrow) + H_2$

Figure 1. Reaction with zinc ammonium carbonate.

By virtue of being in a liquid state the reaction is more rapid than those exhibited by powdered zinc-containing H_2S scavengers. Solubility and the available surface area of zinc containing particles will influence the reaction rate.

To demonstrate its effectiveness, the ZAC material was tested in a simple WBM. Two industry benchmarks, zinc oxide and a water-based triazine, were evaluated to determine relative effectiveness. The properties of the H_2S scavengers tested can be seen in Table 2.

Table 2. Properties of ZAC and industry benchmarks.

Chemistry	Activity	Solvents
ZAC	26%	Water
Zinc Oxide	98%	Dry Powder
Triazine	40%	Water

Performance Comparison in a WBM

In the first set of experiments a WBM was prepared. The formulation used is listed in Table 3. In each case the muds were hot rolled for five hours at 150°F. Two dosages were made for each type of H_2S scavenger along with a base mud. The muds

were treated with 5.75 lb/bbl of sodium sulfide to simulate hydrogen sulfide contamination. Sodium sulfide was used as a safer test route than directly using H_2S . Sodium sulfide is basic and converts from Na₂S to S⁻⁻, HS⁻, and H₂S depending on the pH of the drilling fluid (Amosa et al. 2010).

Table 3. Water-based mud formulation.

Material	Addition Level	
Tap Water	340 mL	
API Bentonite	10 lb/bbl	
Xanthan Gum	0.5 lb/bbl	
Lignite	5 lb/bbl	
Scavenger Chemistry	1 - 3 lb/bbl	
Sodium Sulfide	5.75 lb/bbl	

Sample preparation and testing procedure:

- 1. Mix the tap water and xanthan gum for 10 minutes.
- 2. Add the bentonite and mix for 10 minutes.
- 3. Add the lignite and mix for 10 minutes.
- 4. Adjust pH to approximately 10.5 using sodium hydroxide.

5. Add the required amounts of scavenger products and mix for one hour using a Multimixer.

6. Add sodium sulfide to each sample. Close and seal aging cell immediately.

- 7. Hot roll the sample for 5 hours at 150°F.
- 8. Collect filtrate via API fluid loss test.
- 9. Test filtrate for H₂S content via Garrett Gas Train.

The API filtrate was collected for each sample over thirty minutes. The Garrett Gas Train method was used to determine the amount of sodium sulfide remaining in each mud after the brief hot rolling.

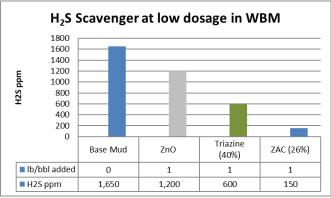


Figure 2. Treating at 1 lb/bbl scavenger.

In Figure 2 above, it is shown that each scavenger reduces the total amount of H_2S (zinc sulfide) compared to the base mud. At 1 lb/bbl treatment (as delivered), the industry standards did not remove enough H_2S to be considered safe. The ZAC removed almost all of the H_2S from the mud system.

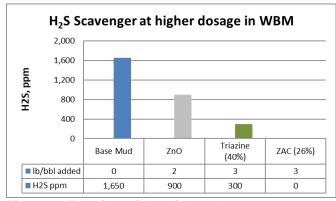


Figure 3. Treating with a higher dosage.

As the amount of scavenger was increased, a decrease in H_2S was observed as seen in Figure 3. 2 lb/bbl of Zinc Oxide reduced the toxic gas to 900 ppm while the triazine lowered it to 300 ppm. At 3 lb/bbl the ZAC completely eliminated the H_2S . It is quite likely that 3 lb/bbl ZAC was excessive for the amount of H_2S .

It should be noted that both zinc containing additives can flocculate clay-containing WBMs. A similar behavior occurs when calcium (Ca^{++}) from lime is added to the mud. This is easily countered with standard water-based mud thinners.

Performance Comparison in an SBM

The study also evaluated a slightly lower concentrated version of ZAC in a 10 lb/bbl synthetic-based mud. The active substance of the ZAC is identical, but the concentration is 15% active. Table 4 shows the formulation used for testing. Figure 4 shows the performance versus the same high purity Zinc Oxide used in the WBM testing.

Material	Addition Level
Base Oil	191 lb/bbl
10.5 ppg CaCl ₂ Brine	83.6 lb/bbl
Organoclay	8 lb/bbl
Emulsifier	6 lb/bbl
Rheology Modifier	2 lb/bbl
Lime	8 lb/bbl
Barite	116 lb/bbl
Scavenger Chemistry	1 - 8.5 lb/bbl
Sodium Sulfide	5.5 lb/bbl

Sample preparation and testing procedure:

- Mix the oil, brine and clay for 10 minutes.
 Add the emulsifiers and lime and mix for 15
- minutes.
- 3. Add the barite and mix for 15 minutes.
- 4. Mix the mud on the Silverson for 10 minutes.

5. Add the required amounts of Zinc Oxide and Zinc Ammonium Carbonate.

6. Add Sodium Sulfide to each sample. Close and seal aging cell immediately.

7. Hot roll the sample for 5 hours at 150°F.

8. Test for H₂S content via Garrett Gas Train.

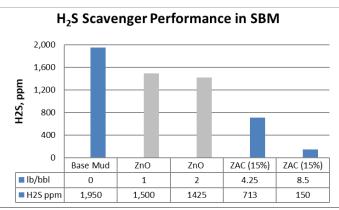


Figure 4. Performance in SBM.

Figure 4 shows that the scavengers were able to reduce the amount of H_2S compared to the base mud. Increasing the level of Zinc Oxide from 1 to 2 lb/bbl showed minimal effect. Whereas, ZAC showed a substantial decrease in H_2S when its dosage was doubled. The ZAC removed almost all of the H_2S from the mud system.

Since the 15% ZAC is more dilute, we should also point out the active content. At 4.25 and 8.5 lb/bbl treatment, there is only 0.64 and 1.3 lb/bbl of "active substance" being added to the mud system.

Conclusions

- Zinc Ammonium Carbonate is effective at removing H₂S
- The same material functions in both water and oil-based systems
- Reduced logistics with single additive

Acknowledgments

The authors would like to thank David Breeden for his guidance on the study. The authors would also like to thank Oilfield Testing and Consulting in Houston for performing the Garrett Gas Train work.

Nomenclature

H_2S	= Hydrogen Sulfide
ppg	=pounds per gallon
ррт	=parts per million
OSHA	=Occupational Safety and Health Administration
WBM	=Water-based Drilling Fluids
OBM	=Oil-based Drilling Fluids
ZAC	=Zinc Ammonium Carbonate
1b/bbl	=pounds per barrel

SBM =Synthetic Fluid-based OBM

References and Background Reading

- Alkamil, H.K., Abbas, A.K. and Flori, R. 2018. "Lab-Scale Real-Time Mud pH and EC Monitoring System while Drilling in Hydrogen Sulfide Formations." AADE-18-FTCE-034, AADE Fluids Technical Conference, Houston, April 10-11, 2018. Available from www.aade.org
- Amosa, M.K., Mohammed, I.A., and Yaro, S.A. "Sulfide Scavengers in Oil and Gas Insustry – A Review." Professional Paper, February 2010.
- Garrett, R. "A New Field Method for Quantitative Determination of Sulfides in Water-Base Drilling Fluids." Journal of Petroleum Technology, Sept. 1977, 1195 – 1202.
- Garrett, R., Clark, R., Carney, L. and Grantham, C. "Chemical Scavengers for Sulphides in Water-Base Drilling Fluids." Journal of Petroleum Technology, June 1979, 787 – 796.
- "H2S in Oil Industry." Web article published November 15, 2017. <u>www.arab-oil-naturalgas.com/h2s-in-oil-industry/</u>
- 6. "Hydrogen Sulfide-Hazards." Occupational Safety and Health Administration Website on February 4, 2020. www.osha.gov/SLTC/hydrogensulfide/hazards.html
- "Permian Drilling Hydrogen Sulfide Drilling Operations Plan New Mexico." OXYPermian field procedure book. Revised June 27, 2012.
- Rudolf, R.L. 1977. "Well Planning For Drilling in Hydrogen Sulfide Formations." SPE Symposium on Sour Gas and Crude, Tyler, November 14-15, 1977. SPE-6655-MS. <u>https://www.onepetro.org/conference-paper/SPE-6655-MS</u>