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Abstract 

Nonlinear fluid flow models in circular conduits, long 
available for drilling and offshore applications, have supported 
accurate and effective operational planning for decades.  
Closed-form analytical solutions for Newtonian, Power Law, 
Bingham Plastic and Herschel-Bulkley rheologies have 
demonstrated their utility in numerous field endeavors and 
have proven to be indispensable in day-to-day calculations. 

A limitation in all available models is the restriction to 
circular cross-sections. Non-circular area effects are 
approximately handled by changing pipe radius, but the flow 
rate and pressure gradient relationship does depend strongly 
on clog geometry.  For example, drilling debris, subsea wax 
and hydrates, depending on the physical process, may 
distribute at the bottoms, sides and tops of flow conduits with 
resulting cross-sectional geometries defying simple or elegant 
description.  Thus, engineers are left without predictive 
methods that support operational decisions, except for costly, 
time-consuming and labor-intensive empirical lab studies. 

In our approach, the locus of the clog and fluid interface, 
defined by user-selected points, is used to develop smooth 
boundary-conforming curvilinear grids honoring the details of 
any general clog.  Stair-step, block-like and “lumpy” 
approximations are not used.  The momentum equations for 
the above rheological models are rewritten in these 
coordinates, and numerically solved for axial velocity with 
zero slip velocity constraints for both pressure and flow rate 
formulations.  The rapid, stable model requires just seconds of 
desk time on Windows computers, and color displays for 
velocity, apparent viscosity, stress and strain are automatically 
integrated.  Numerical details are offered and different clog 
geometries are considered, demonstrating the versatility of the 
new approach. Apparent viscosity, shear rates and shear 
stresses are calculated from these velocity distributions.   

In this paper, we stress the important role of viscous shear 
stress in debris and clog removal – detailed physical 
discussions and examples are given.   
 
Introduction  

Clogged pipelines are as old as civilization itself and cover 
broad applications in modern petroleum, mechanical and civil 
engineering.  There are presently no ideal engineering models 
that support general diagnostics or mathematical analysis.  The 
examples in Figure 1 point to wide ranges of physical 
parameters such as diameter, fluid rheology, debris type and 

general deposition geometry that must be considered.  Annual 
maintenance expenses worldwide are high and address pigging 
operations, periodic cleaning, blockage detection and removal, 
and both major repairs and upgrades. Clogs and debris can be 
removed by increasing surface viscous shear stress, for 
example, by increasing volume flow rate or by introducing 
additives that alter the fluid rheology. An accurate and 
versatile model supporting such needs is required and we 
summarize the approach and results for our new model here. 

 

 

Figure 1.  Clogged pipelines in petroleum, mechanical and 
civil engineering operations – broad ranges in diameters, fluid 
rheology, debris type and general deposition geometry.   
 
Methodology and Approach 
 

Classical Mathematical Solutions 

Pipe flow solutions are among the first developed by fluid-
dynamicists in the nineteenth century because of their simple 
mathematical character.  Assumptions include circular cross-
sections, as in Figure 2, together with requirements for smooth 
surfaces, laminar behavior, incompressibility, minimal inlet 
effects, rigid boundaries, steady conditions and zero rotation.   
Available solutions apply to Newtonian, Power Law, Bingham 
Plastic, Herschel-Bulkley and Ellis rheologies, among others 
used in chemical engineering practice.  

 

Figure 2.  Axisymmetric pipe flow assumption. 
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Newtonian flow solution.  The earliest solution to the 
Navier-Stokes equations applies only to Newtonian fluids like 
air, water and certain oils.  There are the Hagen-Poiseuille 
formulas below, applicable to Figure 2 where the axial 
velocity u(r) > 0 depends on the radial coordinate r > 0.  With 
this convention, the “shear rate” du/dr < 0 is negative, that is, 
u(r) decreases as r increases.  The notation d/dt = - du/dr > 0 
is often used.  If the viscous shear stress  and the shear rate 
are linearly related by  = -  du/dr > 0, where  is a constant 
viscosity, then two simple relationships follow.  Let p > 0 be 
the (positive) pressure drop over a pipe of length L, and R be 
the inner radius of the pipe.  Then, the radial velocity 
distribution satisfies  u(r) = [p /(4 L)] (R2 – r2) > 0.  Note that 
u is constrained by a “no-slip” velocity condition at r = R.  If 
the product of “u(r)” and the infinitesimal ring area “2r dr” is 
integrated over (0,R), we obtain the volumetric flow rate 
expressed by Q = R4p /(8 L) > 0 .   Observe that the viscous 
stress (and its wall value w) can be calculated from the above, 
leading to  (r) = r p/2L > 0 and w = R p/2L > 0. Viscous 
wall shear stresses are important in pipe operations because 
higher levels (together with dynamic erosion) act to retard 
clogging due to surface adhesion.  On the other hand, 
pressures are important in the sense that they may help to 
dislodge larger pipeline blockages. 

Bingham Plastic pipe flow.  The limitations in the Hagen-
Poiseuille flow solution were recognized early on.  Bingham 
Plastics satisfy a slightly modified constitutive relationship, 
usually written in the form  = 0 -  du/dr where 0 represents 
the yield stress of the fluid.  In other words, fluid motion will 
not initiate until stresses exceed the yield threshold; in a 
moving fluid, a “plug flow” moving as a solid body is always 
found below a “plug radius” defined by  Rp = 20 L /p . 

Thus the “if-then” nature of the model renders it nonlinear, 
despite the (misleading) linear appearance of the stress-strain 
relationship.  Fortunately, simple solutions are known, where 
u(r) = (1 /) [{p /(4L)} (R2 – r2) – 0 (R – r)], Rp  r  R, and
u(r) = (1 /) [{p /(4L)} (R2 – Rp

2) – 0 (R – Rp)], 0  r  Rp 
with Q/(R3) =  w /(4)] [1 – 4/3 (0 /w) + 1/3 (0 /w) 

4].    

Power Law fluid pipe flow.  These fluids, without yield 
stress, satisfy the Power Law  = K ( - du/dr) 

n model where n 
and K are constants.  The corresponding axial velocity is 
found as u(r) = (p/2KL) 

1/n
 [n/(n+1)] ( R 

(n+1)/n - r 
(n+1)/n ).  Then 

the volume flow rate is Q/(R3) = [Rp/(2KL)] 
1/n

 n/(3n+1).        

Herschel-Bulkley pipe flow.  This combines Power Law 
with yield stress characteristics,  = 0 + K ( - du/dr) 

n, so that      

u(r) = K 
-1/n

 (p/2L) 
-1

 {n/(n+1)}  

[(Rp/2L  - 0) 
(n+1)/n - (rp/2L  - 0) 

(n+1)/n], Rp  r  R   

u(r) = K 
-1/n

 (p/2L) 
-1

 {n/(n+1)}  

[(Rp/2L  - 0) 
(n+1)/n - (Rpp/2L  - 0) 

(n+1)/n], 0  r  Rp   

Q/(R3) = K 
-1/n

 (Rp/2L) 
-3

 (Rp/2L  - 0) 
(n+1)/n    

 [(Rp/2L  - 0)
2

 n /(3n+1) + 2 0 (Rp/2L - 0) n /(2n+1) + 0
2

 

n/(n+1)]    

Ellis fluid pipe flow.  Finally, Ellis fluids satisfy a more 
complicated zero yield stress constitutive relationship with = 
- du/dr /(A + B

).   The velocity and flow rate solutions are 
u(r) = A p (R2 – r2)/(4L) + B(p/2L) 

 ( R 
 - r 

)/( + 1) 
and a volume integral given as Q/(R3)=Aw /4 + Bw 


 /(+3) 

= A(Rp/2L)  /4 + B(Rp/2L) 


 /(+3).  As noted earlier, other      
rheological models appear in the literature.  Typical qualitative 
features of the main models for velocity appear in Figure 3. 
 

 

Figure 3.  Typical Newtonian and non-Newtonian 
axisymmetric/concentric axial velocity profiles. 

The above solutions are important for several reasons. 
They all give the dependence of velocity, volume flow rate 
and pressure drop on the basic geometric and rheological 
parameters, and provide engineers with means to provide 
“back of the envelope” estimates in field or office work.  Note 
that the dependencies are more complicated than those in the 
simplest Hagen-Poiseuille relationships.  The results also 
support nonlinear “Q versus p” graphical plots that are 
important operationally and in purchase decisions.  However, 
they are restricted to purely circular cross-sections, thus 
limiting their applicability to somewhat unrealistic ideal flows 
that are unlike those shown in Figure 1, where the dependence 
on geometry is general. Hence, it has proven impossible to 
develop useful models that support basic “pressure versus 
rate” needs as well as important surface viscous stress 
estimates required for pigging and maintenance operations.  
This overall problem is addressed in the present paper where 
we introduce a new approach to pipe flow modeling. 
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Motivation for Non-Circular Cross-Sectional Grids 

Axisymmetric math models assuming circular cross-
sections permit closed-form mathematical models but are 
clearly not suitable for clog analysis and remediation 
applications because of azimuthally-dependent depositional 
processes.  Thus, “boundary-conforming” or curvilinear 
coordinate grid systems are needed, understanding now that 
geometric complexities will preclude the possibility of 
analytical solutions.  Three grid strategies are immediately 
apparent from Figure 4, but are sub-optimal. It is important to 
emphasize the differences between these conventional grid 
options and our approach.  In (a), low grid densities provide 
poor physical resolution, worsened by the inability to resolve 
curvature-related details at boundaries.  These are usually 
resolved by interpolation, which introduces numerical noise.  
In (b), finer local grids are used to overcome the problems in 
(a), but the meshes are inefficiently employed.  For instance, 
fine grids near the duct center are not needed; at boundaries, 
noise is again found that depend on grid size and aspect ratio.  

The boundary-conforming polar-like grid in (c) does not 
introduce interpolation noise, and will accommodate 
geometric complexities with smaller numbers of grids.  This is 
acceptable.  However, for general shapes, it is not clear where 
the “origin” or “center” is and what boundary conditions 
might apply at that location. This renders mathematical flow 
formulations extremely difficult if not impossible to solve.  
Ideally, a robust formulation would not need a center and 
proceed as if the duct behaved like a square or a rectangular.  
Further, if numerical outputs for shear stresses could coincide 
with top, bottom and side locations, analyses for clog removal 
and pigging operations would be direct and straightforward. 

 

 

Figure 4.  Conventional gridding options. 

Alternatively, it might be more interesting to use 
“rectangle-based” mesh systems for “circle-like” cross-
sections.  One would solve for the velocity field (subject to 
no-slip conditions) first, and then post-process it to produce 
shear rate, shear stress and apparent viscosity distributions. 
Solutions based on such grids would yield results like those 
for shear rate shown in Figure 5 directly.  Carefully note the 
appearance of background superposed quadrilaterals – these 
contrast with the “pizza slices” evident from Figure 4c.  For 
the perfect circular duct shown, the left plot for shear rate 
U/x (where “x” is the vertical coordinate) provides 
immediately useful information for top and bottom clog 
erosion.  The obvious red zones easily indicate the magnitude 
of the relevant high viscous stresses needed for debris removal 

at the top and bottom.  Similarly, the right plot for U/y 
(where “y” is the horizontal coordinate) supports applications 
where debris cling to piping sidewalls.   

 

Figure 5.  “Rectangle-based” grids (ideal for clog analyses 
and remediation since viscous stresses are available at “x” and 
“y” top, bottom and left-right sidewall locations). 

Again, the mesh inherent to Figure 5, shown with 
superposed grid lines, is “rectangular” in nature and ideal for 
clog analyses since clogs typically form at top, bottom and 
sidewall pipe locations – precisely where viscous stresses are 
now easily available for cleaning estimates. Now, Figure 5 
was originally developed for Newtonian flows, where shear 
rates are direct indicators of shear stress.  But just how are the 
underlying coordinate systems defined and how are the 
relevant non-Newtonian momentum fluid equations integrated 
into this framework?  Before we address the solution process, 
we explain why viscous shear stresses are important to debris 
removal – this physical principle motivated our search for 
means to calculate surface stresses in complicated geometries. 

Annular Flow Cuttings Transport Removal  

The pipe flow work in this paper is closely related to prior 
annular flow modeling efforts (Chin 2012).  The earlier work 
addressed cuttings debris removal in deviated and horizontal 
wells, a problem confronting the industry described in detailed 
laboratory experiments (Becker et al. 1989).  The 
experimenters were not able to correlate cuttings transport 
efficiency with any obvious drilling parameters.  However, it 
later turned out that successful cause and effect relationships 
were possible with the top-of-bed viscous stress taken as the 
correlation parameter.  In retrospect, stresses clearly remove 
cuttings the same way erasers remove pencil smudges.  Our 
algorithm facilitated viscous stress calculations in the highly 
eccentric annular spaces found in horizontal drilling. 

 

Figure 6a.  Annular flow planar velocity plot. 
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Figure 6b.  Annular flow three-dimensional velocity plot. 

The annular flow model developed at the time assumed the 
general “doubly-connected” contour at the top of Figure 7.  
Normally, solutions are solved using approaches similar to 
that in Figure 4 – together with all their limitations. Instead, 
the annular region was “mapped” or transformed to the 
“singly-connected” (fictitious) duct problem at the bottom of 
Figure 7.  When this is done, simple, easily programmed 
algorithms are possible.  For instance, the simple double-
nested Fortran loop for “NMAX” integrations below, executed 
in the index space 1 < I < IMAX and 1 < J < JMAX is all 
that is required to produce converged axial velocities U(I,J). 

    DO 200  N = 1, NMAX 
    DO 100  I = 1, IMAX 
    DO 100  J = 1, JMAX 
    U(I,J) = . . .  
100 CONTINUE 
200 CONTINUE 
 

 

Figure 7.  Mapping physical to computational plane.  

The mapping transformation requires the introduction of 
the two “branch cuts” B1 and B2 at the top of Figure 7 which 
convert the annulus to simple duct form.  The fictitious cuts, 
which are mathematical artifacts, require only that U(I,J) 
and its derivatives remain continuous from one cut to the 
other. In other words, for the artificial duct, sudden physical 
changes are disallowed.   

We now turn our attention to Figure 8, which shows two 
physically realizable ducts.  There are no mathematical 
differences between artificial and physically realizable duct 
formulations except that (1) the former satisfy “smoothness” 
conditions at B1 and B2, while (2) the latter satisfy actual 
physical “no slip” velocity conditions.  Both ducts in Figure 8 
are regarded as four-sided, with sides AB, BC, CD and DA 
(and corners) arbitrarily chosen by the user. 

 

Figure 8.  General four corner (y,x) cross-sections. 

Now we overlay the duct of interest on graph paper, and 
select or “pencil in” points (y1,x1), (y2,x2), (y3,x3) and so on, 
along the entire closed physical curve.  These y and x values 
are assigned to the four edges shown, with AB corresponding 
to the left of the rectangle in Figure 7, AD the top, DC the far 
right, and CB the bottom.  The rectangle is defined in (,) 
space, so that AB lies along = 0 and 0 < < max and CD 
along = maxand 0 < < max (there are equal numbers of 
(y,x) points on AB and CD).   Similar considerations apply to 
BC and DA.  With (y,x) known along the boundary curve in 
the (,) plane, a coupled nonlinear boundary value problem 
for ( ) x + ( ) x + ( ) x = 0, ( ) y + ( ) y + ( ) y = 0 is 
solved where the ( ) are known functions of x, x, y and y. 
Once the solution for x(,) and y(,) is available, the 
governing equation for the velocity u(y,x) for any rheological 
model is re-expressed in (,) coordinates and solved subject 
to no-slip conditions along all solid pipe boundaries.  For the 
curvilinear grids used in this paper, mesh and velocity 
solutions can be obtained in five seconds on Windows i5 
machines.  Point relaxation methods were used to solve all 
partial differential equations.  For details, readers are referred 
to earlier papers due to (Thompson 1984) and (Thompson et 
al. 1985) and the refinements developed in (Chin 2012).   

Our duct flow software development, building on existing 
annular flow work, actually required much less effort.  With 
the “artificial to physical” duct modification introduced 
earlier, the eccentric annular flow simulator was converted to 
one for general duct cross-sections by modifying only five 
lines of Fortran source code.  Of course, this simplification 
was only possible with the “out of box” realization that 
physical ducts and, in fact, any ducts with closed contours, can 
be mapped into rectangular spaces – including triangular, 
polygonal and distorted-oval shapes.  We emphasize that the 
successful physical correlation between cuttings debris 
removal in drilling annular spaces and cuttings bed surface 
viscous stress motivated the present work on clog remediation 
in non-circular pipes.  We are also fortunate that the annular 
flow algorithm could be converted to solve non-Newtonian 
flows in ducts having general conduit cross-sections.   
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We offer a short case study analysis on the role of surface 
viscous shear stress in debris removal.  Extensive flow loop 
experiments were performed at the University of Tulsa and the 
annular data is publicly available (Becker et al. 1989).   Figure 
9 shows remaining cuttings concentrations decreasing as 
surface viscous stress increases.  The black shapes represent 
data points obtained by actual volume measurements while the 
straight lines correspond to eccentric annular flow model 
calculations.  The successful correlations shown were obtained 
at all well deviation angles.  We expect this physical principle 
to remain valid in pipe flows as well.  All that was needed at 
the outset of our work was a computational means to calculate 
such stresses for arbitrary clog cross-sections.  Again, it is 
important to emphasize the differences between the grid 
formulations shown in Figures 4a,b,c versus our use of 
somewhat non-intuitive rectangular systems as in Figure 5 for 
general duct flows.  To reiterate, the velocity formulation 
applies to Newtonian and non-Newtonian fluids, while shear 
rates, shear stresses and apparent viscosities are post-
processed from converged velocity fields.   

 

Figure 9.  Computed viscous stress cleaning correlations for 
lab cuttings transport removal at the University of Tulsa. 

Computational Results and Detailed Examples 

Example 1.  Non-Newtonian Power Law Circular Pipe 
Flow in Rectangle-Like Coordinates. 

In this example, we evaluate our use of rectangular 
coordinate approaches for a Power Law fluid flow in a circular 
conduit, here comparing solutions with exact azimuthal results 
obtained analytically. We consider n = 0.9 with k = 17 mPa sn 
= 0.000002466 psi sn for the same pipe radius of 0.59 in (or 
1.5 cm) and a volume flow rate of Q = 0.01585 gpm (or 1 
cc/s).   The coordinates in Figure 5 were again used in the 
simulations, since in the Newtonian calibration run, errors less 
than 1% were found.  As shown in Figure 10-2a, the exact 
pressure gradient is found to be 0.00004287 psi/ft.  When our 
finite difference model is run with the built-in mesh generator, 
the pressure gradient 0.00003738 psi/ft is obtained with the 
flow rate 0.01593 gpm.  The difference in flow rate is about 
0.5% while that for pressure gradient is near 14%.  In practical 
engineering calculations, we would adjust the mesh until 
pressure gradients, flow rates and wall stresses closely agree – 

only then would we use the mesh to study the implications of 
different clog geometries.  However, as the purpose of this  
work is to understand mesh effects and the basic feasibility of 
the curvilinear grid approach, we defer such modifications to 
future studies.  Results are shown in Figure 10-2b. 

 

 

Figure 10-2a.  Exact Power Law pipe flow solver “app.” 
 
   No-slip velocity conditions everywhere. 
   Geometry input from DUCTFILE.DAT file. 
  
   POWER LAW FLOW OPTION SELECTED. 
  
   Power law fluid assumed, with exponent "n" equal 
   to .9000E+00 and consistency factor of .2466E-05 
   lbf sec^n/sq in. 
  
   Target flow rate of .1585E-01 gal/min specified. 
 
O  Axial pressure gradient of .3738E-04 psi/ft 
   yields volume flow rate of .1593E-01 gal/min. 
 
   Pressure gradient found iteratively, .3738E-04 psi/ft, 
   yielding .1593E-01 gal/min vs target .1585E-01 gal/min. 
  
   Total, volume flow rate:  .1593E-01 gal /min 
   Cross - sectional  area:  .1094E+01 sqr inch 
   Kinetic energy, density:  .2158E-02 in^4/s^2 
  
   TABULATION OF CALCULATED AVERAGE QUANTITIES:   
   Area weighted means for absolute value taken  
   over entire pipe (x,y) cross-sectional area    
  
O  Axial flow velocity  (inches / sec):  .4970E-01 
O  Apparent viscosity (lbf sec / sqin):  .2863E-05 
O  Viscous stress AppVis x dU/dx (psi):  .4316E-06 
O  Viscous stress AppVis x dU/dy (psi):  .5239E-06 
O  Dissipation fnctn (lbf/(sec sq in)):  .2475E-06 
O  Shear rate dU/dx (Recip sec, 1/sec):  .1564E+00 
O  Shear rate dU/dy (Recip sec, 1/sec):  .1890E+00 
O  Stokes product Vel x ApVis (lbf/in):  .1486E-06 

 

 
 

 

Figure 10-2b.  Circle flow properties using (y,x) solver – 
note the variable apparent viscosity field obtained. 
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It is important to comment on the above display and 
explain why more plots are given than those in Figure 5.  For 
Newtonian fluids, as given in Figure 5, the assumed viscosity 
 is the same constant everywhere, so that shear stress and 
shear rate color plots, aside from their magnitudes, would be 
duplicative.  Hence, stress plots are omitted.  The viscosity 
(versus x and y) is also not plotted because its value is given 
and fixed everywhere.  The situation is different for non-
Newtonian flows.  In Figure 10-2b, the “apparent viscosity” is 
seen to vary with space.  Consequently, plots for shear stresses 
and shear rates will differ qualitatively as well as 
quantitatively.  In the case of yield stress rheologies (like 
Bingham Plastic and Herschel-Bulkley fluids), the central 
velocity will be broader and flatter, as in Figure 3.  We 
emphasize that apparent viscosities will differ from one pipe 
radius or flow rate to another.  Laboratory-measured 
viscosities (taken at an arbitrary fixed shear rate) will be 
limited in value in actual downhole or pipe flow problems 
where shear rates and apparent viscosity vary with position. 

 
Example 2.  Non-Newtonian velocity fields with large 
and gradual overhead obstructions.   

Self-explanatory velocity results for pipeline flows with 
large and gradual overhead obstructions are presented below. 
Red zones indicate maximums within each diagram and will 
represent different values from case to case.  The results 
shown were assembled from multiple independent runs. 
Again, it is possible to derive shear rate, viscous shear stress 
and apparent viscosity from the calculated velocity field, but 
for brevity, this is deferred to Example 4.   

 

Figure 10-5a.  Influence of clog size on velocity field – the 
same colors in different frames denote different velocities. 

 

 

Example 3. Non-Newtonian axial velocities 
encountering sudden and sharp obstacles. 

Velocities for flows with sudden and sharp obstacles are 
offered below.  As in Example 2, red zones indicate 
maximums within each diagram and will represent different 
values from case to case (the results shown were assembled 
from multiple independent runs). Again, we can derive shear 
rate, viscous shear stress and apparent viscosity from the 
calculated velocity field and plot them, but for brevity, this is 
deferred to the next example.  

 
Figure 10-5b.  Influence of clog size on velocity field – the 
same colors in different frames denote different velocities. 

Example 4.  Non-Newtonian flow in arteries, 
capillaries and veins.  

Flows in arteries, veins and capillaries provide examples 
of real-world transient clogging motions. Despite the 
biologically-oriented title in this calculation, we emphasize 
that such flows are legitimate pipe flows nonetheless.  Flows 
in the main aorta are largely Newtonian, while here we focus 
on those in the smaller arteries, veins and capillaries which are 
non-Newtonian.  The static model developed in our work can 
be incorporated into dynamic “time lapse” movies that show 
the clogging process evolving in time.  The time lapse 
sequence below models a complex biological process due to 
ongoing plaque formation that is countered by a coupled 
erosion model.  The erosion model alters local clog thickness 
as a function of surface stress and dynamic erosion using a 
postulated empirical mechanism.  This model can be evaluated 
using laboratory or clinical data. The approach also applies to 
wax, hydrate or debris deposition in subsea pipelines or 
general cleaning in surface applications.   
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Figure 10-7d.  Time lapse movie frames for axial velocity, 
apparent viscosity, and rectangular x and y shear rates and 
viscous stresses are shown.  The stresses will affect buildup 
and clog movement in arteries and veins and also in general 
pipeline problems.  Transient area reductions in time are the 
cumulative effect of a physical build-up mechanism, viscous 
shearing and dynamic erosion.  Note that volume flow rate 
versus pressure gradient curves are also possible using the 
methodology. 
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Example 5.  A Software Clog Workflow Plan. 

In the simulations below, we assume a radius of 0.25 inch 
(or a diameter of 0.5 inch), the size of a small feeder pipe 
where non-Newtonian effects are important.  Our objective is 
to demonstrate the features behind our formulation and 
methods of validation rather than altering meshes to match 
data.  Altering mesh sizes and distributions is required of all 
simulators since different grids will yield different solutions – 
matching data alone does not really validate solution integrity.  
We consider Newtonian flow in a perfect circle first, followed 
by Power Law flow in a circle, and then Power Law in a 
clogged flow. 

Simulation No. 1 – Newtonian flow in a perfect circle. 

We first consider the Newtonian limit where two exact 
analytical solutions for volume flow rate are available when 
pressure gradient is specified.  The “1 cp” Newtonian and 
“0.0000001465 lbf secn/in2” Power Law viscosity 
specifications are identical.  A pressure gradient test value is 
taken of – 0.0001 psi/ft.  The results in Figure 10-8a, using 
Newtonian and Power Law solutions, consistently show a 
volume flow rate of 0.02266 gpm (where “gpm” refers to 
“gallons per minute” – these “app” simulators were originally 
developed from the analytical solutions cited previously).  

 
Figure 10-8a.  Exact analytical solution results. 

We now turn to curvilinear grid solutions which, again, do 
not assume axisymmetry.  The Newtonian choice in Figure 
10-8b invokes the three supporting menus at the left.  Clicking 
“Simulate” leads rapidly to results shown beneath Figure 10-
8b in Courier New font.  “Iterating . . .”  refers to 
relaxation solutions of the curved grid difference equations.   

 
Figure 10-8b.  Using PipeFlow options in curvilinear 

grid non-Newtonian flow simulator. 

Iterating, please wait ... 
 
Iteration 100, Tolerance = .9233E-03 
Iteration 200, Tolerance = .2057E-04 
Iteration 300, Tolerance = .5139E-06 
Iteration 400, Tolerance = .0000E+00 
Iteration 500, Tolerance = .0000E+00 
 
Total, volume flow rate:  .2263E-01 gal /min 
Cross - sectional  area:  .1961E+00 sqr inch 
Kinetic energy, density:  .2541E-01 in^4/s^2 
 
Area weighted means for absolute value taken 
over entire pipe (x,y) cross-sectional area 
 
O  Axial flow velocity  (inches / sec):  .3937E+00 
O  Apparent viscosity (lbf sec / sqin):  .1465E-06 
O  Viscous stress AppVis x dU/dx (psi):  .4289E-06 
O  Viscous stress AppVis x dU/dy (psi):  .5128E-06 
O  Dissipation fnctn (lbf/(sec sq in)):  .4199E-05 
O  Shear rate dU/dx (Recip sec, 1/sec):  .2927E+01 
O  Shear rate dU/dy (Recip sec, 1/sec):  .3500E+01 
O  Stokes product Vel x ApVis (lbf/in):  .5768E-07 

Figure 10-8c.  Curvilinear grid finite difference results. 

Note that the exact “R2”cross-sectional area should be 
3.14159 (0.25) (0.25) or 0.1963 in2.  Our numerical solution, 
obtained on a relatively coarse mesh, yields 0.1961 in2 which 
provides an important check point  The exact volume flow rate 
found previously was 0.02266 gpm whereas the solution here 
is 0.02265 gpm, for a very small 0.1% error.  These results 
establish a measure of baseline credibility. 

Simulation No. 2 – Power Law flow in a perfect circle. 

Next we consider the same problem for a perfect circle but 
assuming Power Law properties.  The assumptions are shown 
in Figure 10-9a.  Note that we have assumed n = 0.7 and K = 
0.00001465 lbf secn/in2 which, if this flow were Newtonian, 
would represent ten times the viscosity of water.  In 
Simulation No. 1, we specified pressure gradient, but here we 
are prescribing a more complicated volume flow rate instead. 
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  Thus, there are two levels of iteration.  First, a test 
pressure gradient is assumed for the initial calculation, and 
iterations solving the curved grid equations are solved until 
convergence.  If the final result does not agree with the 
prescribe flow rate, a “half-step method” correction is used.  
The Windows solution requires about 5 seconds of desk time. 

 
Figure 10-9a.  Power Law run with flow rate specified –  
note, a 1 gpm target volume flow rate is about 63 ml/s. 

O  Axial pressure gradient of .8906E-01 psi/ft 
   yields volume flow rate of .1006E+01 gal/min. 
   Iterations continuing ... 
 
Pressure gradient found iteratively, .8906E-01 psi/ft, 
yielding .1006E+01 gal/min vs target .1000E+01 gal/min. 
 
Total, volume flow rate:  .1006E+01 gal /min 
Cross - sectional  area:  .1961E+00 sqr inch 
Kinetic energy, density:  .4968E+02 in^4/s^2 
 
Area weighted means for absolute value taken 
over entire pipe (x,y) cross-sectional area 
 
O  Axial flow velocity  (inches / sec):  .1753E+02 
O  Apparent viscosity (lbf sec / sqin):  .3171E-05 
O  Viscous stress AppVis x dU/dx (psi):  .3636E-03 
O  Viscous stress AppVis x dU/dy (psi):  .4347E-03 
O  Dissipation fnctn (lbf/(sec sq in)):  .1569E+00 
O  Shear rate dU/dx (Recip sec, 1/sec):  .1296E+03 
O  Shear rate dU/dy (Recip sec, 1/sec):  .1540E+03 
O  Stokes product Vel x ApVis (lbf/in):  .6427E-04 

Figure 10-9b.  Curved grid Power Law solution for circle. 

 

 

Figure 10-9c.  Exact Power Law solution for circular pipe. 

 

But just how accurate is the curved grid finite difference 
solution in Figure 10-9b?  The results show that, for our target 
flow rate of 1 gpm, the required pressure gradient is 0.08906 
psi/ft.  In Figure 10-9c, the exact analytical solution shows 
that 1 gpm is achieved with a pressure gradient of 0.0845 
psi/ft.  Thus, the error is a small 5% where, we accentuate, we 
have not “fine tuned” the mesh to improve the solution. 

Simulation No. 3 – Power Law flow results in a clogged 
conduit. 

Now, we use exactly the same menu assumptions as in 
Figure 10-9a above, except that the circular geometry is 
changed to one that is clogged.  The main results are shown in 
Figure 10-10a.  Note that the pressure gradient (magnitude) is 
0.1500 psi/ft and is much greater than the 0.08906 psi/ft in 
Simulation No. 2 due to the fact that a smaller area is used to 
pass the same flow rate.  In Figure 10-10b, for the axial 
velocity field, the clog is displayed as the result of a straight 
vertical cut – actually, any arbitrary geometric deformation is 
permitted.  The shear rates u/x and u/y are shown in 
Figure 10-10c, while the viscous shear stresses (x,y) u/x 
and (x,y) u/y are shown in Figure 10-10d.  Here, (x,y) is 
the apparent viscosity in Figure 10-10e, which is also 
determined as part of the iterative solution.  Unlike the 
Newtonian viscosity, the apparent viscosity depends on the 
flow rate or pressure gradient, plus the geometric details of the 
cross-section and the location of the point in question.  Net 
shear rates and shear stresses are no longer axisymmetric as 
with circular cross-sections.  Observe that while our grid is 
boundary-conforming, we have made no attempt to distribute 
perimeter points uniformly.  In a practical engineering 
calculation where matches with data are needed, this would 
represent an additional step in the workflow. 

 
O  Axial pressure gradient of .1500E+00 psi/ft 
   yields volume flow rate of .1010E+01 gal/min. 
   Iterations continuing ... 
 
Pressure gradient found iteratively, .1500E+00 
psi/ft, 
yielding .1010E+01 gal/min vs target .1000E+01 
gal/min. 
 
Total, volume flow rate:  .1010E+01 gal /min 
Cross - sectional  area:  .1484E+00 sqr inch 
Kinetic energy, density:  .6617E+02 in^4/s^2 
 
Area weighted means for absolute value taken 
over entire pipe (x,y) cross-sectional area 
 
O  Axial flow velocity  (inches / sec):  .2391E+02 
O  Apparent viscosity (lbf sec / sqin):  .2696E-05 
O  Viscous stress AppVis x dU/dx (psi):  .3379E-03 
O  Viscous stress AppVis x dU/dy (psi):  .7140E-03 
O  Dissipation fnctn (lbf/(sec sq in)):  .3709E+00 
O  Shear rate dU/dx (Recip sec, 1/sec):  .1329E+03 
O  Shear rate dU/dy (Recip sec, 1/sec):  .2986E+03 
O  Stokes product Vel x ApVis (lbf/in):  .7248E-04 
 

Figure 10-10a.  Power Law flow in clogged blood vessel. 
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Figure 10-10b.  Velocity solutions for unclogged circular 
section (left) and clogged section (right) for Power Law flow.  
Clog is displayed as result of vertical cut.  Colored regions are 
flow areas (red is high).  The same color represents different 
values as they were obtained in two different simulations. 
 

 

Figure 10-10c.  Shear rates in Power Law flow. 
 

 
Figure 10-10d.  Viscous shear stress in Power Law flow. 

 

Figure 10-10e.  Apparent viscosity (x,y) in Power Law flow. 

 

 

Conclusions 

We successfully performed several tasks in our research on 
non-Newtonian flow in clogged non-circular pipes: 

1. A fast finite difference algorithm for arbitrary duct 
geometries hosted by boundary-conforming curvilinear 
grids was developed; 

2. The method provides high-resolution solutions for axial 
velocity, apparent viscosity, and x and y shear rates and 
viscous shear stresses everywhere; 

3. Stresses can be used to determine the ability of a duct to 
self-clean in the presence of debris-building mechanisms; 

4. Nonlinear pressure drop versus volume flow rate 
relationships can be calculated by performing the 
calculation for different pressure drops and used in pump 
power, pipeline cleaning and economic applications. 
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