AADE-24-FTCE-087

Fluid Loss Control in Water and Oil-Based Drilling Fluids using Amphipathic Star Shaped Polymer

Guoqing Jian, Ashok Santra, Georgesha Ross, Aramco Americas

Copyright 2024, AADE

This paper was prepared for presentation at the 2024 AADE Fluids Technical Conference and Exhibition held at the Marriott Marquis, Houston, Texas, April 16-17, 2024. This conference is sponsored by the American Association of Drilling Engineers. The information presented in this paper does not reflect any position, claim or endorsement made or implied by the American Association of Drilling Engineers, their officers, or members. Questions concerning the content of this paper should be directed to the individual(s) listed as author(s) of this work.

30% of this paper comes from "A novel star polymer for regulating fluid loss in oil-based mud under high temperature conditions," published in Journal of Molecular Liquids, in November 2023.

Abstract

Methods, Procedures, Process: In this study, a class of new star homemade polymers was used as fluid loss control agents in either water or oil-based drilling fluids depending on its hydrophilic-lyophilic balance (HLB). The polymer was designed using hydrophilic and lyophilic monomer functionalities to create blocks with a tunable hydrophilic-lyophilic balance (HLB).

Results, Observations, Conclusions: Performance testing under high-temperature conditions was conducted using water or oil-based drilling fluids, and the results showed that the star copolymer was highly effective in reducing fluid loss and generating a thin filter cake. The study also showed that the star polymer is beneficial for enhancing the low-end rheology without obviously increase of the plastic viscosity. For oil-based mud, the emulsion stability outperforms other commercial fluid loss control products-based muds due to the amphipathic nature of the star polymer.

Novel/Additive Information: The polymer's star configuration and amphipathic nature offers superior fluid control abilities, without causing significant increases in the drilling mud's PV and AV. Additionally, it enhances the lowend rheology over a wide range of temperatures, thereby improving its ability to suspend cuttings. The findings of this research provide significant understanding for the advancement of fluid loss control additives in drilling fluids, thereby aiding the development of next-generation solutions for the drilling industry.

Introduction

Developing petroleum reservoirs is a costly endeavor, with drilling standing out as the most expensive phase(Lukawski et al. 2014). On the flip side, drilling fluid(Rana, Khan, and Saleh 2021; Sahu, Kumar, and Sangwai 2020) plays a crucial role in drilling operations by cooling the drill bit, elevating cuttings from the bottom hole to the surface, and managing subsurface

pressure to ensure wellbore stability. This fluid, a complex mixture of solids, liquids, and gases, is categorized into different types based on the base fluids utilized. These types include water-based mud (WBM), oil-based mud (OBM), and foam drilling mud. Water-based mud(Dye et al. 2006; Ewy and Morton 2009; Gbadamosi et al. 2019; Mohanty et al. 2022; Mühlstedt et al. 2021; Fei Liu et al. 2022) is extensively employed in drilling due to its minimal environmental impact; however, in scenarios involving water-sensitive formations like shale or high-temperature reservoirs, oil-based mud becomes necessary. Comprising a blend of oil, water, and various additives such as emulsifiers (Celino et al. 2022; Y. Chen, Song, and Tan 2022), weighting agents, and viscosifiers (Ghavami et al. 2018), oil-based mud(Adewale and Ogunrinde 2010; Aston et al. 2002; Davies et al. 1984; Yan et al. 2023; Hajiabadi et al. 2021; Zhuang et al. 2017) serves as a viable alternative in specific drilling conditions.

Controlling fluid loss(Cao et al. 2017) is a critical element in oil-based mud drilling. Oil-based mud typically includes oil as the continuous phase, leading to potential high fluid loss and diminished drilling efficiency. To address this, additives like gilsonite(Guo et al. 2014; Pakdaman et al. 2020) are often integrated into oil-based muds due to their cost-effectiveness. However, the low chemical stability of gilsonite can render it unsuitable for use in high-temperature and high-pressure conditions. To overcome this challenge, gilsonite is frequently chemically treated to enhance its thermal stability and prevent degradation at elevated temperatures. Moreover, when gilsonite is added to oil-based muds without supplementary stabilizing additives, it tends to agglomerate, causing an undesirable increase in the plastic viscosity of drilling muds. The untreated gilsonite demonstrates low thermal stability and poor dispersibility in invert emulsions. Consequently, this has driven the development of second-generation fluid loss control additives based on linear polymers.

Tailoring linear polymers(Fan Liu et al. 2016) with diverse structures and molecular weights allows them to be customized to meet specific requirements in drilling operations. This adaptability renders them a cost-effective and practical solution for addressing the challenges in drilling operations. Various studies have delved into the application of different linear

polymer additives for managing filtration loss in Oil-Based Mud (OBM). In 2004, Stewart et al. (Stewart et al. 2004) suggested that incorporating around 2% by weight of a butadiene-styrene-butadiene block copolymer could effectively reduce filtration loss to below 0.2 mL/30min. Mettath et al. developed a quebracho-based product modified with amines(Mettath et al. 2011)v, demonstrating enhanced performance in controlling filtration loss in OBM, particularly under high-temperature conditions. Dias et al. (2015) utilized esterified starch as additives for regulating fluid loss in invertemulsion drilling fluids. Additionally, Murphy and Bening introduced hydrogenated isoprene-styrene diblock copolymers(Dias, Souza, and Lucas 2015) to mitigate filtration loss in OBM, especially at temperatures exceeding 350 °F. However, a significant drawback of employing linear polymers to control fluid loss is the unintended increase in viscosity due to their high molecular weight. This has led to exploration in developing polymers with a more adaptable structure, capable of regulating fluid loss without significantly impacting the rheology or electrical emulsion stability of the oil-based mud (OBM).

In this study, a novel approach was taken to tackle the challenge at hand by introducing a new generation of amphoteric star polymers. Amphoteric star polymers(Luo et al. 2018) represent polymeric materials featuring a central core and multiple polymer arms extending outward. These polymers can be tailored to possess specific characteristics, including high molecular weight, a dense branching structure, and a substantial surface area. Experimental results indicated that the amphoteric star polymer formed aggregates, producing more stable emulsions in comparison to linear or gilsonite-type fluid additives. Moreover, the plastic viscosity of the drilling fluid containing the star polymer demonstrated minimal change, or even a decrease, under high-temperature conditions. Testing various mud systems with different densities and oils revealed that the mud system incorporating this star polymer yielded the thinnest filter cake and minimal fluid loss volume under elevated temperatures. These findings underscore the excellent fluid control and rheology profiles exhibited by the polymer developed in this study, making it well-suited for Oil-Based Mud (OBM) applications across a broad spectrum of densities and temperatures.

Materials and Methodology

Materials

Acrylic acid (AA, purity 99%), lauryl acrylate (LA, purity 90%), 2-(butylthiocarbonothioylthio) propanoic acid (BTPA, purity 95%), 2,2'-Azobis(2-methylpropionitrile) (AIBN, purity 98%), N,N'-methylenebis(acrylamide) (MBA, purity 99%), benzoyl peroxide (BPO) with 25% H2O, tetrahydrofuran (THF, purity $\geq 99.9\%$), toluene (purity 99.8%), water (purity 99%), and ethanol (purity ≥99.5%) were procured from Sigma-Aldrich. All obtained reagents were used as received without the need for additional purification. The synthesis of the star polymer was conducted using an in-house method as shown in Figure 1.

Fourier-transform infrared spectroscopy (FT-IR)

Fourier-transform infrared spectroscopy (FT-IR) analysis was carried out using the Cary 630 FTIR Spectrometer from Agilent Technologies, and the subsequent data processing was executed using MicroLAb Expert, also from Agilent Technologies. The FT-IR test utilized the dry star polymer.

Thermal Gravimetric Analysis (TGA)

Thermogravimetric analyses (TGA) were conducted using a TA Thermogravimetric Analyzer (SDT Q600). The sample underwent heating from room temperature at a consistent rate of 10 °C/min, with air employed as the furnace gas, reaching temperatures up to 1000 °C.

Rheological behavior

The rheological characteristics of diverse mud systems were assessed using either the model 35 or model 77 rheometer from Fann Instrument Company. Rheology tests were conducted at various temperatures following a 16-hour hot rolling period at each temperature. The rheological data were obtained at different rotational speeds (600, 300, 200, 100, 6, and 3 rev/min), corresponding to shear rates of 1022, 511, 341, 170, 10, and 5 s⁻¹, respectively. The apparent viscosity (AV), plastic viscosity (PV), and yield point (YP) were calculated using the following equations.

$$AV = \frac{\theta_{600}}{2} (mPa \cdot s)$$
 (1)

$$PV = \theta_{600} - \theta_{300} (mPa \cdot s)$$
 (2)

$$YP = \theta_{300} - PV (lb/100ft^{2})$$
 (3)

$$PV = \theta_{600} - \theta_{300} \ (mPa \cdot s) \tag{2}$$

$$YP = \theta_{300} - PV \ (lb/100ft^2) \tag{3}$$

Where θ_{600} and θ_{300} represent the dial readings at rotational speeds of 600 rev/min and 300 rev/min, respectively. Gel strength refers to the shear stress measured at a low shear rate following shearing the mud system at a high shear rate and allowing it to set for a period. In this context, the gel strength was measured after 10 seconds and 10 minutes.

Filtration Loss

The fluid loss measurement was conducted using the hightemperature high-pressure filter press. The HTHP tests were conducted at 350 °F at a different pressure of 500 psi for 30 mins. The volume of fluid loss after 30 mins was recorded and the thickness of filter cake was measured.

Results and discussions

Polymer synthesis

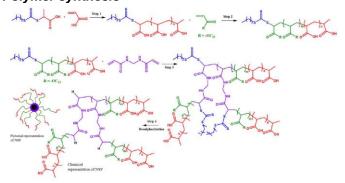


Figure 1 Steps for polymer synthesis

Figure 1 illustrates the one-pot synthesis of a block star polymer, incorporating hydrophilic acrylic acid and lipophilic lauryl acrylate, along with the crosslinker methylene bisacrylamide. The synthesis involved three monomers: (A) acrylic acid (AA), (B) lauryl acrylate (LA), and (C) methylene bisacrylamide (MBA). The process for creating the final star polymer is outlined in several steps, employing a one-pot-three step addition approach. The schematic depiction of the star polymer synthesis process is presented in Error! Reference s ource not found.

Fourier-transform infrared spectroscopy (FT-IR)

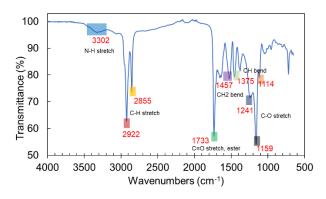


Figure 2 FT-IR spectra of NSP (MBA-c-PAA-b-PLA)

Based on Figure 2, the broad adsorption band at 3302 cm-1 corresponds to the N-H stretching(Lu et al. 2018) vibration of the amide group. The absorption band at 2922 cm-1 and 2855 cm-1 corresponds to asymmetric(Rodrigues et al. 2019) and symmetric(Lando et al. 2017) stretching of C-H, the absorption bands at 1733 cm-1 correspond to ester carbonyl group C=O stretch(Dzulkefly et al. 2010), the absorption band at 1457 cm-1 is CH2 in-plane bending mode(Cai, Lv, and Feng 2013). 1375 cm-1 corresponds to C-H bending(Carrillo et al. 2004), and the

absorption band at 1241 cm-1, 1159 cm-1, 1114 cm-1 is due to the C-O stretching vibration of the ester(Cai, Lv, and Feng 2013; Smith 2018; Kurrey et al. 2020).

Thermal Gravimetric Analysis (TGA)

According to the information provided in **Figure 3**, the polymer experiences an initial mass loss at temperatures up to 225°C. This initial decline is associated with the evaporation of the solvent that is trapped within the dry polymer. It implies that the solvent used in dissolving the polymer during synthesis remains confined within the polymer structure even after the drying phase. Upon heating the polymer, the solvent evaporates, leading to the observed initial mass loss.

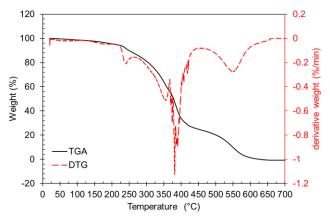


Figure 3 TGA curve for NSP (PAA-b-PLA)

Nevertheless, beyond 225°C, a consistent mass loss is observed in the polymer, primarily attributable to its degradation (Moharram and Khafagi 2006; Daugaard, Jankova, and Hvilsted 2014). The heating process initiates the breakdown of polymer chains, resulting in the release of fragments and subsequent mass loss. The study highlights two prominent degradation peaks in the polymer, occurring at 380°C and 550°C. Despite degradation at higher temperatures, the findings indicate that NSP exhibits notable thermal stability up to 225°C. This suggests the polymer's ability to withstand elevated temperatures without significant degradation, making it a desirable material for high-temperature drilling applications.

Rheology and fluid loss of diesel-based or synthetic oil-based mud

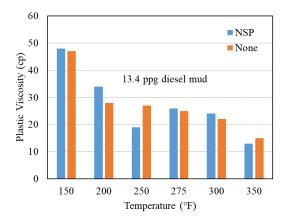
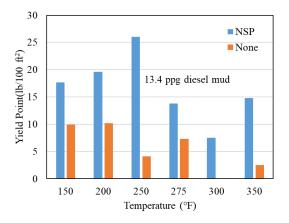
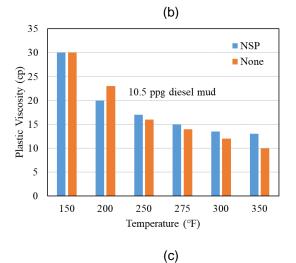
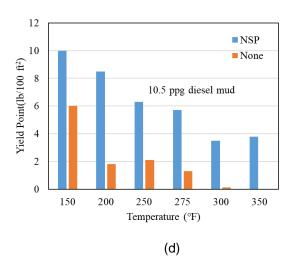

In this research, various materials were utilized, encompassing diesel, Organoclay (a rheology modifier), lime (a primary emulsifier), a wetting agent, DI water, calcium chloride-saturated brine, NSP, the linear polymer Pliolite, natural gilsonite, barite, and Rev dust. **Table 1** and **Table 2** present the mud formulations with two distinct densities (10.5 and 13.4 lbm/gal), utilizing diesel and as the oil phases.

Table 1 Oil-based mud formulation with a density of 13.4 ppg using diesel


Fluid	NSP	Linear polymer	Gilsonite based	No FLA
formulations		1 3		
(lb/bbl)				
Diesel	178.3	178.3	178.3	178.3
Organoclay	4	4	4	4
Rheology modifier	2	2	2	2
Lime	10	10	10	10
Primary	10	10	10	10
emulsifier				
Wetting agent	5	5	5	5
DI water	18.58	18.58	18.58	18.58
Calcium	53.27	53.27	53.27	53.27
Chloride saturated brine				
NSP	3.6			.
Linear polymer	-	4		_
Gilsonite based		-	4	_
Barite	280	280	280	280
Rev Dust	50	50	50	50
Rev Bust	50	50	30	50
Density, lbm/gal	13.4	13.4	13.4	13.4
Aging	Rolling	Rolling	Rolling	Rolling
conditions	=	=	=	· ·
Aging period, hr	16	16	16	16


Table 2 Oil-based mud formulation with a density of 10.5 ppg using diesel


			No FLA
203.5	203.5	203.5	203.5
			4
2	2		2
10	10	10	10
10	10	10	10
5	5	5	5
21.5	21.5	21.5	21.5
61	61	61	61
4	-	-	_
-	4	-	-
-	-	4	-
120	120	120	120
50	50	50	50
10.5	10.5	10.5	10.5
Rolling	Rolling	Rolling	Rolling
16	16	16	16
	4 2 10 10 10 5 5 21.5 61 4 120 50 10.5 Rolling	4 4 2 2 10 10 10 10 10 10 5 5 5 5 5 121.5 21.5 61 61 4 4 4 120 50 50 50 10.5 Rolling Rolling	4 4 4 4 4 2 10 10 10 10 10 10 10 10 10 10 5 5 5 5 5

(a)

Figure 4 Rheology of diesel mud for (a) plastic viscosity (13.4 ppg); (b) yield point (13.4 ppg); (c) plastic viscosity (10.5 ppg); (d) yield point (10.5 ppg) with Fann 77 at different temperatures at 10, 000 psi.

Figure 4 depicts the rheology outcomes of mud samples at

varying temperatures (150, 200, 250, 275, 300, 350 °F). Notably, at 250 °F and 350 °F, the plastic viscosity (PV) values for the NSP-based mud system were lower than those for the mud without any fluid loss additive. In contrast, the yield point of the NSP-based mud exceeded that of the control sample, reaching a maximum of 25 lb/100 ft2 at 250 °F and 15 lb/100 ft2 at 350 °F. The NSP mud system exhibited improved yield point performance compared to the mud system without a fluid control additive at all tested temperatures, indicating enhanced cutting suspension capability.

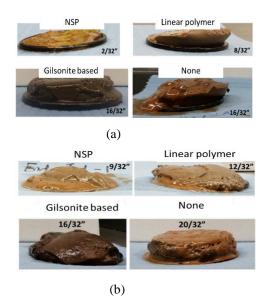

For the 10.5 lbm/gal mud, the presence of NSP led to slightly higher plastic viscosity up to a temperature of 350 °F. However, the yield point of the NSP-based mud significantly surpassed that of the mud without any fluid control additive across all investigated temperatures. These results suggest that NSP demonstrates superior suspending capability (Fayad et al. 2021; Y. Chen et al. 2021) compared to oilbased mud (OBM) lacking NSP, particularly at elevated temperatures.

Table 3 API HTHP fluid loss measurement of 13.4 ppg OBM with diesel at 350°F

Fluid loss control additive	Fluid loss volume (mL)	Filter cake thickness
NSP	<1	2/32"
Linear polymer	2.2	8/32"
Gilsonite based	8.2	16/32"
None	2.8	16/32"

Table 4 API HTHP fluid loss measurement of 10.5 ppg OBM with diesel at 350°F

Fluid loss control additive	Fluid loss volume (mL)	Filter cake thickness
NSP	3.6	9/32"
Linear polymer	2.6	12/32"
Gilsonite based	4.0	16/32"
None	6.4	20/32"

Figure 5 Filter cake of different polymers based OBM with diesel(a)13.4 ppg mud; (b)10.5 ppg mud

Table 3 presents the fluid loss measurements of a 13.4 lbm/gal mud system using different fluid control additives. Notably, the NSP mud system exhibits minimal fluid loss, measuring less than 1 mL, and showcases the thinnest filter cake (2/32") compared to other investigated fluid loss control additives, as depicted in **Figure 5**.

In Table 4, focusing on a 10.5 lbm/gal mud system, the linear polymer emerges as the most effective in terms of fluid loss volume. Both NSP and gilsonite-based additives exhibit fluid loss volumes ranging from 3.6 to 4.0 mL, slightly outperforming the mud system without fluid control additives. However, NSP stands out by significantly reducing the filter cake thickness from 20/32" to 9/32" when compared to the control mud system. These results emphasize that the configuration and amphipathic nature of NSP particles play a crucial role in regulating fluid loss, especially at elevated temperatures.

This phenomenon aligns with previous research. For instance, Chen et al. (Y. Chen et al. 2021) reported a hypercross-linked polymer synthesized from poly (maleic anhydridealt-1-octadecene) (PMAO) cross-linked with amine, serving as a fluid loss control agent for diesel-based OBM. The hypercross-linked polymer (ACP) particles, being amphipathic, can be dispersed in the oil phase, reducing OBM fluid loss by 90% at 450 °F. However, significant increases in apparent viscosity and plastic viscosity for their mud systems suggest challenges arising from the linear nature of the long polymer chains. Similarly, Chen et al. (F. Chen et al. 2023) reported slightly amphiphilic poly (acrylamide-co-divinylbenzene) (PACD) microspheres, dispersed in diesel oil phase, reducing API fluid loss at 356 °F to 7.5 mL with 0.56wt% addition, compared to around 29 mL for conventional oxidized asphalt in a 7.4 lbm/gal OBM system. The low fluid loss of OBM with PACD is

attributed to its ductile property under HTHP conditions and its amphipathic affinity to both oil and water. This amphipathic affinity stabilizes emulsions in OBM, aiding emulsion droplets in plugging holes and voids during the API HTHP fluid loss test.

Conclusions

In summary, this study introduces the synthesis and characterization of a novel star polymer (NSP) derived from the crosslinking of poly(acrylic acid)-block-poly(lauryl acrylate) with methylene bisacrylamide. Thorough analyses using TGA and FTIR confirmed the NSP's thermal stability and the presence of desired functional groups. Moreover, when dispersed in diesel oil, the NSP exhibited distinct advantages in rheology and fluid loss tests. Rheological data indicated that the NSP significantly improved low-end rheology and yield point, enhancing the suspension performance of oil-based mud (OBM), particularly at elevated temperatures. Additionally, the amphipathic nature of micron-sized NSP particles facilitated adsorption at the water-oil interface, leading to improved emulsion stability. This stabilized emulsion proved beneficial in enhancing fluid loss performance, as the emulsion droplets effectively sealed holes and voids during the API HTHP fluid loss test.

These findings pave the way for further research in polymer-based additives for oil-based muds. The unique properties of NSP, including thermal stability, rheological enhancement, fluid loss control, and emulsion stabilization, offer promising applications in oil-based drilling fluids. Future investigations can delve into optimizing the synthesis process, employing additional characterization techniques, and exploring NSP's performance under diverse drilling conditions. Furthermore, the impact of NSP concentration, particle size, and other formulation parameters on its effectiveness in specific oilfield applications can be explored for further refinement.

References

- Adewale, Dosunmu, and Joshua O. Ogunrinde. 2010. "Development of Environmentally Friendly Oil Based Mud Using Palm-Oil and Groundnut-Oil." In . OnePetro. https://doi.org/10.2118/140720-MS.
- Aston, M., P. Mihalik, J. Tunbridge, and S. Clarke. 2002. "Towards Zero Fluid Loss Oil Based Muds." In . OnePetro. https://doi.org/10.2118/77446-MS.
- Cai, Yanming, Jungang Lv, and Jimin Feng. 2013. "Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy." *Journal of Polymers and the Environment* 21 (1): 108–14. https://doi.org/10.1007/s10924-012-0534-2.
- Cao, Jie, Lingwei Meng, Yuping Yang, Yuejun Zhu, Xiaoqiang Wang, Chengyan Yao, Mingbo Sun, and Hanyi Zhong. 2017. "Novel Acrylamide/2-Acrylamide-2-Methylpropanesulfonic Acid/4-Vinylpyridine Terpolymer as an Anti-Calcium Contamination Fluid-Loss Additive for

- Water-Based Drilling Fluids." *Energy & Fuels* 31 (11): 11963–70.
- https://doi.org/10.1021/acs.energyfuels.7b02354.
 Carrillo, F, X Colom, J. J Suñol, and J Saurina. 2004. "Structural FTIR Analysis and Thermal Characterisation of Lyocell
 - and Viscose-Type Fibres." *European Polymer Journal* 40 (9): 2229–34.
 - https://doi.org/10.1016/j.eurpolymj.2004.05.003.
- Celino, Karoline Nóbrega, Rafael da Silva Fernandes, Stéphanie Cavalcante de Morais, Elessandre Alves de Souza, and Rosangela de Carvalho Balaban. 2022. "Emulsion-Based Drilling Fluids: Rheological Properties Preservation Facing Changes on the Temperature, Pressure and Dispersed Phase." *Journal of Molecular Liquids* 352 (April): 118753. https://doi.org/10.1016/j.molliq.2022.118753.
- Chen, Fu, Lin Zhang, Jie He, Mina Luo, and Fang Song. 2023. "Slightly Amphiphilic Polymer Microspheres as an HTHP Fluid Loss Control Additive for Oil-Based Drilling Fluid." Arabian Journal for Science and Engineering 48 (1): 117–28. https://doi.org/10.1007/s13369-022-06781-x.
- Chen, Yanru, Qi Song, and Yebang Tan. 2022. "Synthesis, Aggregation Behavior of Alternating Copolymer Emulsifier in Oil Solution and Its Application in Oil-Based Drilling Fluids." *Journal of Molecular Liquids* 348 (February): 118011. https://doi.org/10.1016/j.molliq.2021.118011.
- Chen, Yanru, Ruonan Wu, Jing Zhou, Hao Chen, and Yebang Tan. 2021. "A Novel Hyper-Cross-Linked Polymer for High-Efficient Fluid-Loss Control in Oil-Based Drilling Fluids." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 626 (October): 127004. https://doi.org/10.1016/j.colsurfa.2021.127004.
- Daugaard, Anders Egede, Katja Jankova, and Søren Hvilsted. 2014. "Poly(Lauryl Acrylate) and Poly(Stearyl Acrylate) Grafted Multiwalled Carbon Nanotubes for Polypropylene Composites." *Polymer* 55 (2): 481–87. https://doi.org/10.1016/j.polymer.2013.12.031.
- Davies, J. M., J. M. Addy, R. A. Blackman, J. R. Blanchard, J. E. Ferbrache, D. C. Moore, H. J. Somerville, A. Whitehead, and T. Wilkinson. 1984. "Environmental Effects of the Use of Oil-Based Drilling Muds in the North Sea." *Marine Pollution Bulletin* 15 (10): 363–70. https://doi.org/10.1016/0025-326X(84)90169-3.
- Dias, F. T. G., R. R. Souza, and E. F. Lucas. 2015. "Influence of Modified Starches Composition on Their Performance as Fluid Loss Additives in Invert-Emulsion Drilling Fluids." *Fuel* 140: 711–16.
- Dye, William, Ken d'Augereau, Nels Hansen, Michael Otto, Larry Shoults, Richard Leaper, Dennis Clapper, and Tao Xiang. 2006. "New Water-Based Mud Balances High-Performance Drilling and Environmental Compliance." SPE Drilling & Completion 21 (04): 255–67. https://doi.org/10.2118/92367-PA.
- Dzulkefly, K., H. F. Khoh, F. B. H. Ahmad, and S. Adlie Ahmad. 2010. "Solvent-Free Esterification Process for the Synthesis of Glucose Bolaform Surfactants." *Oriental Journal of Chemistry* 26 (3): 747.
- Ewy, Russell T., and E. Keith Morton. 2009. "Wellbore-Stability Performance of Water-Based Mud Additives." *SPE Drilling & Completion* 24 (03): 390–97. https://doi.org/10.2118/116139-PA.
- Fayad, Mahmoud M., Dalia E. Mohamed, E. A. Soliman, M. Abd El-Fattah, S. Ibrahim, and M. M. Dardir. 2021. "Optimization

- of Invert Emulsion Oil-Based Drilling Fluids Performance through Heterocyclic Imidazoline-Based Emulsifiers." *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 613 (March): 126092. https://doi.org/10.1016/j.colsurfa.2020.126092.
- Gbadamosi, Afeez O., Radzuan Junin, Yassir Abdalla, Augustine Agi, and Jeffrey O. Oseh. 2019. "Experimental Investigation of the Effects of Silica Nanoparticle on Hole Cleaning Efficiency of Water-Based Drilling Mud."

 Journal of Petroleum Science and Engineering 172
 (January): 1226–34.

 https://doi.org/10.1016/j.petrol.2018.09.097.
- Ghavami, Mohammad, Bashir Hasanzadeh, Qian Zhao, Sadra Javadi, and Daryoush Yousefi Kebria. 2018. "Experimental Study on Microstructure and Rheological Behavior of Organobentonite/Oil-Based Drilling Fluid." *Journal of Molecular Liquids* 263 (August): 147–57. https://doi.org/10.1016/j.molliq.2018.04.137.
- Guo, H., J.. Voncken, T.. Opstal, R.. Dams, and P.L.J.. L.J. Zitha. 2014. "Investigation of the Mitigation of Lost Circulation in Oil-Based Drilling Fluids by Use of Gilsonite." SPE Journal 19 (06): 1184–91. https://doi.org/10.2118/157751-PA.
- Hajiabadi, Seyed Hasan, Hamed Aghaei, Mahdieh Ghabdian, Mina Kalateh-Aghamohammadi, Ehsan Esmaeilnezhad, and Hyoung Jin Choi. 2021. "On the Attributes of Invert-Emulsion Drilling Fluids Modified with Graphene Oxide/Inorganic Complexes." *Journal of Industrial and Engineering Chemistry* 93 (January): 290–301. https://doi.org/10.1016/j.jiec.2020.10.005.
- Kurrey, Ramsingh, Manas Kanti Deb, Kamlesh Shrivas, Jayant Nirmalkar, Bhupendra Kumar Sen, Mithlesh Mahilang, and Vikas Kumar Jain. 2020. "A KBr-Impregnated Paper Substrate as a Sample Probe for the Enhanced ATR-FTIR Signal Strength of Anionic and Non-Ionic Surfactants in an Aqueous Medium." RSC Advances 10 (66): 40428–41. https://doi.org/10.1039/D0RA07286A.
- Lando, Gabriela Albara, Letícia Marconatto, Felipe Kessler, William Lopes, Augusto Schrank, Marilene Henning Vainstein, and Daniel Eduardo Weibel. 2017. "UV-Surface Treatment of Fungal Resistant Polyether Polyurethane Film-Induced Growth of Entomopathogenic Fungi." *International Journal of Molecular Sciences* 18 (7): 1536. https://doi.org/10.3390/ijms18071536.
- Liu, Fan, Guancheng Jiang, Shuanglei Peng, Yinbo He, and Jinxi Wang. 2016. "Amphoteric Polymer as an Anti-Calcium Contamination Fluid-Loss Additive in Water-Based Drilling Fluids." *Energy & Fuels* 30 (9): 7221–28. https://doi.org/10.1021/acs.energyfuels.6b01567.
- Liu, Fei, Xuewu Wang, Xiaqing Li, Xiaodong Dai, Zhaoxiang Zhang, Daoxu Wang, Ye Wang, and Shunyao Jiang. 2022. "Poly(Ionic Liquids) Based on β-Cyclodextrin as Fluid Loss Additive in Water-Based Drilling Fluids." *Journal of Molecular Liquids* 350 (March): 118560. https://doi.org/10.1016/j.molliq.2022.118560.
- Lu, Zhaoqing, Yongsheng Zhao, Zhiping Su, Meiyun Zhang, and Bin Yang. 2018. "The Effect of Phosphoric Acid Functionalization of Para-Aramid Fiber on the Mechanical Property of Para-Aramid Sheet." *Journal of Engineered* Fibers and Fabrics 13 (3): 155892501801300303.
- Lukawski, Maciej Z., Brian J. Anderson, Chad Augustine, Louis E. Capuano, Koenraad F. Beckers, Bill Livesay, and Jefferson W. Tester. 2014. "Cost Analysis of Oil, Gas, and

- Geothermal Well Drilling." *Journal of Petroleum Science and Engineering* 118 (June): 1–14. https://doi.org/10.1016/j.petrol.2014.03.012.
- Luo, Zhihua, Longxiang Wang, Jingjing Pei, Peizhi Yu, and Boru Xia. 2018. "A Novel Star-Shaped Copolymer as a Rheology Modifier in Water-Based Drilling Fluids." Journal of Petroleum Science and Engineering 168 (September): 98–106. https://doi.org/10.1016/j.petrol.2018.05.003.
- Mettath, Sashikumar, Arvind Patel, Emanuel Stamatakis, Steve Young, and M. Swaco. 2011. "Non-Asphaltic, Fluid-Loss-Control Agent for High-Temperature Applications in Synthetic-Based Invert Emulsion Drilling Fluids." In Proceedings of the AADE-11-NTCE-29, AADE Fluids Conference and Exhibition, Houston, TX, USA, 7–9.
- Mohanty, Udit Surya, Adnan Aftab, Faisal Ur Rahman Awan, Muhammad Ali, Nurudeen Yekeen, Alireza Keshavarz, and Stefan Iglauer. 2022. "Toward Improvement of Water-Based Drilling Mud via Zirconia Nanoparticle/API Bentonite Material." *Energy & Fuels* 36 (19): 12116–25. https://doi.org/10.1021/acs.energyfuels.2c01864.
- Moharram, M. A., and M. G. Khafagi. 2006. "Thermal Behavior of Poly(Acrylic Acid)—Poly(Vinyl Pyrrolidone) and Poly(Acrylic Acid)—Metal—Poly(Vinyl Pyrrolidone) Complexes." *Journal of Applied Polymer Science* 102 (4): 4049–57. https://doi.org/10.1002/app.24367.
- Mühlstedt, Guilherme, Jonathan Felipe Galdino, Diogo E. V. Andrade, and Cezar O. R. Negrão. 2021. "Rheological Properties of Hydrate Slurry in the Water-Based Drilling Fluid." *Energy & Fuels* 35 (13): 10488–97. https://doi.org/10.1021/acs.energyfuels.1c00646.
- Pakdaman, Ehsan, Shahriar Osfouri, Reza Azin, Khodabakhsh Niknam, and Abbas Roohi. 2020. "Synthesis and Characterization of Hydrophilic Gilsonite Fine Particles for Improving Water-Based Drilling Mud Properties." *Journal* of Dispersion Science and Technology 41 (11): 1633–42. https://doi.org/10.1080/01932691.2019.1634582.
- Rana, Azeem, Ibrahim Khan, and Tawfik A. Saleh. 2021. "Advances in Carbon Nanostructures and Nanocellulose as Additives for Efficient Drilling Fluids: Trends and Future Perspective—A Review." *Energy & Fuels* 35 (9): 7319–39. https://doi.org/10.1021/acs.energyfuels.0c04341.
- Rodrigues, Laís Morandini, Taciana Deprá Magrini Alva, Herculano da Silva Martinho, and Janete Dias Almeida. 2019.

 "Analysis of Saliva Composition in Patients with Burning Mouth Syndrome (BMS) by FTIR Spectroscopy."

 Vibrational Spectroscopy 100 (January): 195–201.

 https://doi.org/10.1016/j.vibspec.2018.12.002.
- Sahu, Chandan, Rajnish Kumar, and Jitendra S. Sangwai. 2020. "Comprehensive Review on Exploration and Drilling Techniques for Natural Gas Hydrate Reservoirs." *Energy & Fuels* 34 (10): 11813–39. https://doi.org/10.1021/acs.energyfuels.0c02202.
- Smith, Brian. 2018. "The C= O Bond, Part VI: Esters and the Rule of Three." *Spectroscopy* 33 (7): 20–23.
- Stewart, Wayne S., Nathan E. Stacy, Kelly B. Fox, Bharat B. Patel, Sam B. Ledbetter, and Alvin Evans. 2004. Reducing fluid loss in a drilling fluid, issued May 4, 2004.
- Yan, Xiaopeng, Lijun You, Yili Kang, Song Deng, and Chengyuan Xu. 2023. "Formation Damage Induced by Oil-Based Drilling Fluid in a Longmaxi Shale Gas Reservoir: A Comprehensive View of the Drilling, Stimulation, and Production Processes." *Energy & Fuels* 37 (2): 945–54.

https://doi.org/10.1021/acs.energyfuels.2c03100.

Zhuang, Guanzheng, Zepeng Zhang, Maguy Jaber, Jiahua Gao, and Shanmao Peng. 2017. "Comparative Study on the Structures and Properties of Organo-Montmorillonite and Organo-Palygorskite in Oil-Based Drilling Fluids." *Journal of Industrial and Engineering Chemistry* 56 (December): 248–57. https://doi.org/10.1016/j.jiec.2017.07.017.