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Abstract

Methods, Procedures, Process: In this study, a class of new
star homemade polymers was used as fluid loss control agents
in either water or oil-based drilling fluids depending on its
hydrophilic-lyophilic balance (HLB). The polymer was
designed using hydrophilic and Ilyophilic monomer
functionalities to create blocks with a tunable hydrophilic-
lyophilic balance (HLB).

Results, Observations, Conclusions: Performance testing
under high-temperature conditions was conducted using water
or oil-based drilling fluids, and the results showed that the star
copolymer was highly effective in reducing fluid loss and
generating a thin filter cake. The study also showed that the star
polymer is beneficial for enhancing the low-end rheology
without obviously increase of the plastic viscosity. For oil-
based mud, the emulsion stability outperforms other
commercial fluid loss control products-based muds due to the
amphipathic nature of the star polymer.

Novel/Additive  Information: The polymer's star
configuration and amphipathic nature offers superior fluid
control abilities, without causing significant increases in the
drilling mud's PV and AV. Additionally, it enhances the low-
end rheology over a wide range of temperatures, thereby
improving its ability to suspend cuttings. The findings of this
research provide significant understanding for the advancement
of fluid loss control additives in drilling fluids, thereby aiding
the development of next-generation solutions for the drilling
industry.

Introduction

Developing petroleum reservoirs is a costly endeavor, with
drilling standing out as the most expensive phase(Lukawski et
al. 2014). On the flip side, drilling fluid(Rana, Khan, and Saleh
2021; Sahu, Kumar, and Sangwai 2020) plays a crucial role in
drilling operations by cooling the drill bit, elevating cuttings
from the bottom hole to the surface, and managing subsurface

pressure to ensure wellbore stability. This fluid, a complex
mixture of solids, liquids, and gases, is categorized into
different types based on the base fluids utilized. These types
include water-based mud (WBM), oil-based mud (OBM), and
foam drilling mud. Water-based mud(Dye et al. 2006; Ewy and
Morton 2009; Gbadamosi et al. 2019; Mohanty et al. 2022;
Mihlstedt et al. 2021; Fei Liu et al. 2022) is extensively
employed in drilling due to its minimal environmental impact;
however, in scenarios involving water-sensitive formations like
shale or high-temperature reservoirs, oil-based mud becomes
necessary. Comprising a blend of oil, water, and various
additives such as emulsifiers(Celino et al. 2022; Y. Chen, Song,
and Tan 2022), weighting agents, and viscosifiers (Ghavami et
al. 2018), oil-based mud(Adewale and Ogunrinde 2010; Aston
et al. 2002; Davies et al. 1984; Yan et al. 2023; Hajiabadi et al.
2021; Zhuang et al. 2017) serves as a viable alternative in
specific drilling conditions.

Controlling fluid loss(Cao et al. 2017) is a critical element
in oil-based mud drilling. Oil-based mud typically includes oil
as the continuous phase, leading to potential high fluid loss and
diminished drilling efficiency. To address this, additives like
gilsonite(Guo et al. 2014; Pakdaman et al. 2020) are often
integrated into oil-based muds due to their cost-effectiveness.
However, the low chemical stability of gilsonite can render it
unsuitable for use in high-temperature and high-pressure
conditions. To overcome this challenge, gilsonite is frequently
chemically treated to enhance its thermal stability and prevent
degradation at elevated temperatures. Moreover, when gilsonite
is added to oil-based muds without supplementary stabilizing
additives, it tends to agglomerate, causing an undesirable
increase in the plastic viscosity of drilling muds. The untreated
gilsonite demonstrates low thermal stability and poor
dispersibility in invert emulsions. Consequently, this has driven
the development of second-generation fluid loss control
additives based on linear polymers.

Tailoring linear polymers(Fan Liu et al. 2016) with diverse
structures and molecular weights allows them to be customized
to meet specific requirements in drilling operations. This
adaptability renders them a cost-effective and practical solution
for addressing the challenges in drilling operations. Various
studies have delved into the application of different linear
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polymer additives for managing filtration loss in Qil-Based
Mud (OBM). In 2004, Stewart et al. (Stewart et al. 2004)
suggested that incorporating around 2% by weight of a
butadiene-styrene-butadiene block copolymer could effectively
reduce filtration loss to below 0.2 mL/30min. Mettath et al.
developed a quebracho-based product modified with
amines(Mettath et al. 2011)v, demonstrating enhanced
performance in controlling filtration loss in OBM, particularly
under high-temperature conditions. Dias et al. (2015) utilized
esterified starch as additives for regulating fluid loss in invert-
emulsion drilling fluids. Additionally, Murphy and Bening
introduced hydrogenated isoprene-styrene diblock
copolymers(Dias, Souza, and Lucas 2015) to mitigate filtration
loss in OBM, especially at temperatures exceeding 350 °F.
However, a significant drawback of employing linear polymers
to control fluid loss is the unintended increase in viscosity due
to their high molecular weight. This has led to exploration in
developing polymers with a more adaptable structure, capable
of regulating fluid loss without significantly impacting the
rheology or electrical emulsion stability of the oil-based mud
(OBM).

In this study, a novel approach was taken to tackle the
challenge at hand by introducing a new generation of
amphoteric star polymers. Amphoteric star polymers(Luo et al.
2018) represent polymeric materials featuring a central core and
multiple polymer arms extending outward. These polymers can
be tailored to possess specific characteristics, including high
molecular weight, a dense branching structure, and a substantial
surface area. Experimental results indicated that the amphoteric
star polymer formed aggregates, producing more stable
emulsions in comparison to linear or gilsonite-type fluid
additives. Moreover, the plastic viscosity of the drilling fluid
containing the star polymer demonstrated minimal change, or
even a decrease, under high-temperature conditions. Testing
various mud systems with different densities and oils revealed
that the mud system incorporating this star polymer yielded the
thinnest filter cake and minimal fluid loss volume under
elevated temperatures. These findings underscore the excellent
fluid control and rheology profiles exhibited by the polymer
developed in this study, making it well-suited for Oil-Based
Mud (OBM) applications across a broad spectrum of densities
and temperatures.

Materials and Methodology

Materials

Acrylic acid (AA, purity 99%), lauryl acrylate (LA, purity
90%), 2-(butylthiocarbonothioylthio) propanoic acid (BTPA,
purity 95%), 2,2"-Azobis(2-methylpropionitrile) (AIBN, purity
98%), N,N’-methylenebis(acrylamide) (MBA, purity 99%),
benzoyl peroxide (BPO) with 25% H20, tetrahydrofuran (THF,
purity >99.9%), toluene (purity 99.8%), water (purity 99%),
and ethanol (purity >99.5%) were procured from Sigma-
Aldrich. All obtained reagents were used as received without
the need for additional purification. The synthesis of the star

polymer was conducted using an in-house method as shown in
Figure 1.

Fourier-transform infrared spectroscopy (FT-IR)
Fourier-transform infrared spectroscopy (FT-IR) analysis was
carried out using the Cary 630 FTIR Spectrometer from Agilent
Technologies, and the subsequent data processing was executed
using MicroLAb Expert, also from Agilent Technologies. The
FT-IR test utilized the dry star polymer.

Thermal Gravimetric Analysis (TGA)
Thermogravimetric analyses (TGA) were conducted usinga TA
Thermogravimetric Analyzer (SDT Q600). The sample
underwent heating from room temperature at a consistent rate
of 10 °C/min, with air employed as the furnace gas, reaching
temperatures up to 1000 °C.

Rheological behavior

The rheological characteristics of diverse mud systems were
assessed using either the model 35 or model 77 rheometer from
Fann Instrument Company. Rheology tests were conducted at
various temperatures following a 16-hour hot rolling period at
each temperature. The rheological data were obtained at
different rotational speeds (600, 300, 200, 100, 6, and 3
rev/min), corresponding to shear rates of 1022, 511, 341, 170,
10, and 5 s, respectively. The apparent viscosity (AV), plastic
viscosity (PV), and yield point (YP) were calculated using the
following equations.

AV = 9600/2 (mPa - s) @)
PV = 06009 — 0300 (MmPa-s) (2)

Where 0440 and 654, represent the dial readings at rotational
speeds of 600 rev/min and 300 rev/min, respectively. Gel
strength refers to the shear stress measured at a low shear rate
following shearing the mud system at a high shear rate and
allowing it to set for a period. In this context, the gel strength
was measured after 10 seconds and 10 minutes.

Filtration Loss

The fluid loss measurement was conducted using the high-
temperature high-pressure filter press. The HTHP tests were
conducted at 350 °F at a different pressure of 500 psi for 30
mins. The volume of fluid loss after 30 mins was recorded and
the thickness of filter cake was measured.
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Results and discussions

Polymer synthesis
P T e

Figure 1 Steps for polymer synthesis

Figure 1 illustrates the one-pot synthesis of a block star
polymer, incorporating hydrophilic acrylic acid and lipophilic
lauryl acrylate, along with the crosslinker methylene
bisacrylamide. The synthesis involved three monomers: (A)
acrylic acid (AA), (B) lauryl acrylate (LA), and (C) methylene
bisacrylamide (MBA). The process for creating the final star
polymer is outlined in several steps, employing a one-pot-three
step addition approach. The schematic depiction of the star
polymer synthesis process is presented in Error! Reference s
ource not found.

Fourier-transform infrared spectroscopy (FT-IR)
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Figure 2 FT-IR spectra of NSP (MBA-c-PAA-b-PLA)

Based on Figure 2, the broad adsorption band at 3302 cm-1
corresponds to the N-H stretching(Lu et al. 2018) vibration of
the amide group. The absorption band at 2922 cm-1 and 2855
cm-1 corresponds to asymmetric(Rodrigues et al. 2019) and
symmetric(Lando et al. 2017) stretching of C-H, the absorption
bands at 1733 cm-1 correspond to ester carbonyl group C=0
stretch(Dzulkefly et al. 2010), the absorption band at 1457 cm-
1is CH2 in-plane bending mode(Cai, Lv, and Feng 2013). 1375
cm-1 corresponds to C-H bending(Carrillo et al. 2004), and the

absorption band at 1241 cm-1, 1159 cm-1, 1114 cm-1 is due to
the C-O stretching vibration of the ester(Cai, Lv, and Feng
2013; Smith 2018; Kurrey et al. 2020).

Thermal Gravimetric Analysis (TGA)

According to the information provided in Figure 3, the
polymer experiences an initial mass loss at temperatures up to
225°C. This initial decline is associated with the evaporation of
the solvent that is trapped within the dry polymer. It implies that
the solvent used in dissolving the polymer during synthesis
remains confined within the polymer structure even after the
drying phase. Upon heating the polymer, the solvent
evaporates, leading to the observed initial mass loss.
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Figure 3 TGA curve for NSP (PAA-b-PLA)

Nevertheless, beyond 225°C, a consistent mass loss is
observed in the polymer, primarily attributable to its
degradation (Moharram and Khafagi 2006; Daugaard, Jankova,
and Hvilsted 2014). The heating process initiates the
breakdown of polymer chains, resulting in the release of
fragments and subsequent mass loss. The study highlights two
prominent degradation peaks in the polymer, occurring at
380°C and 550°C. Despite degradation at higher temperatures,
the findings indicate that NSP exhibits notable thermal stability
up to 225°C. This suggests the polymer's ability to withstand
elevated temperatures without significant degradation, making
it a desirable material for high-temperature drilling
applications.

Rheology and fluid loss of diesel-based or synthetic oil-
based mud

In this research, various materials were utilized, encompassing

diesel, Organoclay (a rheology modifier), lime (a primary

emulsifier), a wetting agent, DI water, calcium chloride-

saturated brine, NSP, the linear polymer Pliolite, natural

gilsonite, barite, and Rev dust. Table 1 and Table 2 present

the mud formulations with two distinct densities (10.5 and

13.4 Ibm/gal), utilizing diesel and as the oil phases.
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. . . . 30
Table 1 Oil-based mud formulation with a density of = NSP
13.4 ppg using diesel 2 5 None
&
Fluid _ NSP Linear polymer  Gilsonite based ~ No FLA © 20
formulations % 13.4 ppg diesel mud
(Ib/bbl) 5
Diesel 178.3 178.3 178.3 178.3 =15
Organoclay 4 4 4 4 -E
Rheology 2 2 2 2 ~
modifier % 10
Lime 10 10 10 10 i
Primary 10 10 10 10 5
emulsifier -
Wetting agent 5 5 5 5
DI water 18.58 18.58 18.58 18.58 0
CaICIL_Jm 53.27 53.27 53.27 53.27 150 200 250 275 300 350
Chloride
saturated brine Temperature (°F)
NSP 3.6 - - -
Linear polymer - 4 R
Gilsonite based - 4 - (b)
Barite 280 280 280 280
Rev Dust 50 50 50 50 35
]
Density, lom/gal  13.4 13.4 13.4 134 30 NSP
Aging Rolling Rolling Rolling Rolling s = None
conditions 85
Aging period, hr 16 16 16 16 ~
Z 10.5 ppg diesel mud
z 20
2
~ 15
2
Table 2 Oil-based mud formulation with a density of %10
. . =
10.5 ppg using diesel
5
Fluid formulations ~ NSP Linear polymer Gilsonite based No FLA
(Ib/bbl) 0
Diesel 203.5 203.5 203.5 203.5
Organoclay 4 4 4 4 150 200 250 275 300 350
Rheology modifier 2 2 2 2
Lime 10 10 10 10 Temperature (°F)
Primary emulsifier 10 10 10 10
Wetting agent 5 5 5 5
DI water 215 215 215 215 (C)
Calcium Chloride 61 61 61 61
saturated brine
NSP 4 .
Linear polymer - 4 - 12
Gilsonite based - - 4 -
Barite 120 120 120 120 HNSP
Rev Dust 50 50 50 50 10 = None
Density, Ibm/gal 10.5 10.5 10.5 10.5 ('E
Aging conditions Rolling Rolling Rolling Rolling 8 8
Aging period, hr 16 16 16 16 — 10.5 Ppg diesel mud
= S
R
o
- 4
=)
60 g
u NSP ~ 5
50 m None
40 - 1]
13.4 ppg diesel mud 150 200 250 275 300 350

Temperature (°F)

Plastic Viscosity (cp)
w .
(=}

20 (d)
10 Figure 4 Rheology of diesel mud for (a) plastic viscosity
0 (13.4 ppQ); (b) yield point (13.4 ppg); (c) plastic

150200 250 275 300 350 viscosity (10.5 ppg); (d) yield point (10.5 ppg) with
Temperature (°F) Fann 77 at different temperatures at 10, 000 psi.

€) Figure 4 depicts the rheology outcomes of mud samples at
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varying temperatures (150, 200, 250, 275, 300, 350 °F).
Notably, at 250 °F and 350 °F, the plastic viscosity (PV)
values for the NSP-based mud system were lower than those
for the mud without any fluid loss additive. In contrast, the
yield point of the NSP-based mud exceeded that of the
control sample, reaching a maximum of 25 Ib/100 ft2 at 250
°F and 15 1b/100 ft2 at 350 °F. The NSP mud system
exhibited improved yield point performance compared to the
mud system without a fluid control additive at all tested
temperatures, indicating enhanced cutting suspension
capability.

For the 10.5 Ibm/gal mud, the presence of NSP led to slightly
higher plastic viscosity up to a temperature of 350 °F.
However, the yield point of the NSP-based mud significantly
surpassed that of the mud without any fluid control additive
across all investigated temperatures. These results suggest
that NSP demonstrates superior suspending capability
(Fayad et al. 2021; Y. Chen et al. 2021) compared to oil-
based mud (OBM) lacking NSP, particularly at elevated
temperatures.

Table 3 API HTHP fluid loss measurement of 13.4 ppg
OBM with diesel at 350°F

Fluid loss | Fluid loss volume | Filter cake
control additive | (mL) thickness

NSP <1 2/32”

Linear polymer | 2.2 8/32”
Gilsonite based | 8.2 16/32”

None 2.8 16/32”

Table 4 API HTHP fluid loss measurement of 10.5 ppg
OBM with diesel at 350°F

Fluid loss | Fluid loss volume | Filter cake
control additive | (mL) thickness

NSP 3.6 9/32”

Linear polymer | 2.6 12/32”
Gilsonite based | 4.0 16/32”

None 6.4 20/32”

NSP Linear polymer

2/32" 8/32"

Gilsonite based r None

Linear polymer

oo 12/52"

Gilsonite based None
(b)

Figure 5 Filter cake of different polymers based OBM with
diesel(a)13.4 ppg mud; (b)10.5 ppg mud

Table 3 presents the fluid loss measurements of a 13.4
Ibm/gal mud system using different fluid control additives.
Notably, the NSP mud system exhibits minimal fluid loss,
measuring less than 1 mL, and showcases the thinnest filter
cake (2/32") compared to other investigated fluid loss control
additives, as depicted in Figure 5.

In Table 4, focusing on a 10.5 Ibm/gal mud system, the
linear polymer emerges as the most effective in terms of fluid
loss volume. Both NSP and gilsonite-based additives exhibit
fluid loss volumes ranging from 3.6 to 4.0 mL, slightly
outperforming the mud system without fluid control additives.
However, NSP stands out by significantly reducing the filter
cake thickness from 20/32" to 9/32" when compared to the
control mud system. These results emphasize that the
configuration and amphipathic nature of NSP particles play a
crucial role in regulating fluid loss, especially at elevated
temperatures.

This phenomenon aligns with previous research. For
instance, Chen et al. (Y. Chen et al. 2021) reported a hyper-
cross-linked polymer synthesized from poly (maleic anhydride-
alt-1-octadecene) (PMAO) cross-linked with amine, serving as
a fluid loss control agent for diesel-based OBM. The hyper-
cross-linked polymer (ACP) particles, being amphipathic, can
be dispersed in the oil phase, reducing OBM fluid loss by 90%
at 450 °F. However, significant increases in apparent viscosity
and plastic viscosity for their mud systems suggest challenges
arising from the linear nature of the long polymer chains.
Similarly, Chen et al. (F. Chen et al. 2023) reported slightly
amphiphilic poly (acrylamide-co-divinylbenzene) (PACD)
microspheres, dispersed in diesel oil phase, reducing API fluid
loss at 356 °F to 7.5 mL with 0.56wt% addition, compared to
around 29 mL for conventional oxidized asphalt in a 7.4 Ibm/gal
OBM system. The low fluid loss of OBM with PACD is
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attributed to its ductile property under HTHP conditions and its
amphipathic affinity to both oil and water. This amphipathic
affinity stabilizes emulsions in OBM, aiding emulsion droplets
in plugging holes and voids during the API HTHP fluid loss test.

Conclusions

In summary, this study introduces the synthesis and
characterization of a novel star polymer (NSP) derived from the
crosslinking of poly(acrylic acid)-block-poly(lauryl acrylate)
with methylene bisacrylamide. Thorough analyses using TGA
and FTIR confirmed the NSP's thermal stability and the
presence of desired functional groups. Moreover, when
dispersed in diesel oil, the NSP exhibited distinct advantages in
rheology and fluid loss tests. Rheological data indicated that the
NSP significantly improved low-end rheology and yield point,
enhancing the suspension performance of oil-based mud
(OBM), particularly at elevated temperatures. Additionally, the
amphipathic nature of micron-sized NSP particles facilitated
adsorption at the water-oil interface, leading to improved
emulsion stability. This stabilized emulsion proved beneficial
in enhancing fluid loss performance, as the emulsion droplets
effectively sealed holes and voids during the API HTHP fluid
loss test.

These findings pave the way for further research in polymer-
based additives for oil-based muds. The unique properties of
NSP, including thermal stability, rheological enhancement,
fluid loss control, and emulsion stabilization, offer promising
applications in oil-based drilling fluids. Future investigations
can delve into optimizing the synthesis process, employing
additional characterization techniques, and exploring NSP's
performance under diverse drilling conditions. Furthermore, the
impact of NSP concentration, particle size, and other
formulation parameters on its effectiveness in specific oilfield
applications can be explored for further refinement.
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