The Drilling Engineer of the Future – a changed profile

AADE Midcontinent Symposium – January 2025

Presenter: John de Wardt, CEng, FlMechE Global Consultant Wells Life Cycle Program Manager DSA Roadmap & DSABOK

Where did we come from?

- Uncomplicated well profiles and designs
- Costs not a high priority
- Siloed organizations
- Operators driving drilling technology development
- Paper and pdf files
- Poor quality data, inadequate measurements
- Basic technologies established for many years
- Manual operations

Where are we now?

- Complicated well profiles and challenging designs
- Cost reduction a first order objective
- Organization linkages
- Suppliers driving technology development
- Independent digital systems
- Data quality clarification, improved measurements
- Significant development of technologies 1990 2015
- Advanced control systems and automation

Where are we going?

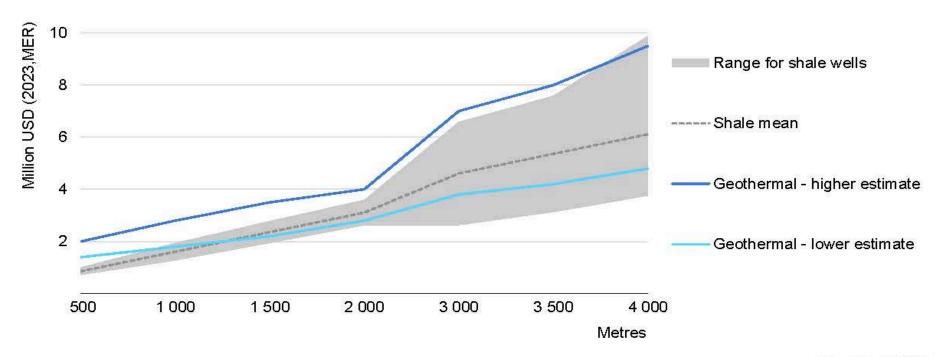
- Broader repertoire of well designs and materials
- Managing costs while driving value
- Interconnectedness with geoscientists and production control
- Life cycle of wells accountability value / integrity
- Fully integrated digitalized life cycle system
- Significant data attribute enhancement
- Highly automized systems with human agent connectivity
- Operator / supplier collaboration on technology development

"The Times They are a Changing" — Bob Dylan

The 3 C's and Well Construction

- Separate Products
- Motors
- Rotary Steerable
- Top Drive
- Cement Unit

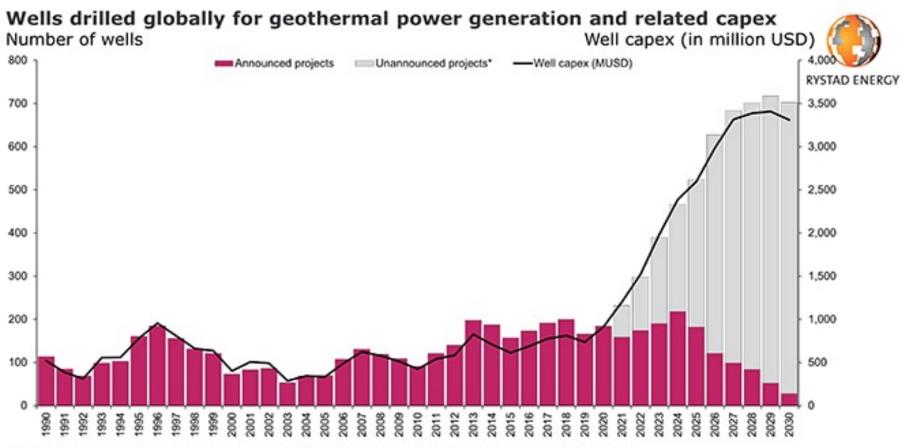
- Interconnected Services
- Remote Directional Svc
- GeoSteering
- Vibration mitigation
- Cement Services


- Automation Agents
- Open-Source Models
- Connected Well Plan
- Connected Field Dev

Well design spectrum broadening

- Design for life cycle blow down, abandon, re-use,
- Geothermal from thermal to EGS and AGS

Belief Geothermal well costs match Shale


Well drilling and completion costs by drilling depth, enhanced geothermal vs shale gas in the United States

IEA. CC BY 4.0.

Sources: IEA analysis based on data from Rystad and NREL.

Projected growth is low but

^{*}Unannounced projects contain an estimated number of wells to be drilled to meet government targets on capacity addons towards 2030

Source: Rystad Energy Geothermal Analysis Dashboard

Well design spectrum broadening

- Design for life cycle blow down, abandon, re-use,
- Geothermal from thermal to EGS and AGS
- CCUS new and re-use
- Well life cycle integrity QRA, …

Life cycle wells accountability

- Integrate workflow concept, design, program, construct, intervention (heavy), abandonment
- Multiple data bases interconnected
- Drilling program cut from 3 months to under 2 weeks "plan a well in a day". No more "Xerox Engineering"
- Integration of wells construction into field development / management

Managing costs while driving value

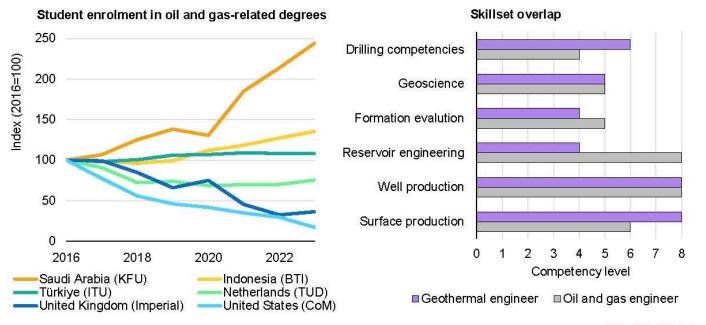
- Probabilistic through tracked detailed costs Class 5 thro I
- Schedule development Level 1 thro 5
- Risk management
- Knowledgeable buyer of broad range of services / technologies
- Knowledgeable communicator to geoscientists and production
- Access to internal and external SME's

Data attribute enhancements

- Attributes include frequency, precision, accuracy, latency, validity
- Traditional rig sensors poor, out-of-date
- Improving sensors mud density
- Adding sensors real time mud systems
- Higher frequency data dynamics requires very high frequency

Growth of data analytics

- Significant increased in real time data processing capability
- Bigger volumes higher frequency and less latency
- Drilling engineers need Data Analysts / Data Analysts need Drilling Engineers
- SaaS Software as a Service select and use
- Al adoption growing but be wary of what it is actually doing


Operator / supplier collaboration

- Growth of IPM / LSTK, benefits, alliances,
- Hardware / software development / deployment by suppliers

Sourcing drilling engineers

- Negative view of oil and gas due to media
- Significant reduction in Petroleum Engineer intake in Western Univ
- Asian Univ continue to produce industry-oriented Petroleum Engineers and other engineers willing to enter oil and gas
- Source Mechanical, Industrial and similar engineering graduates and add industry-oriented courses

Enrolment in degree programmes that provide essential geothermal sector skills, 2016-2023, and skillset overlaps between geothermal and oil and gas engineers

IEA. CC BY 4.0.

Notes: KFU = King Faid University. BTI = Bandung Technology Institute. ITU = Istanbul Technical University. DUT = Delft University of Technology. Imperial = Imperial College London. CoM = Colorado School of Mines.

Sources: Left: IEA analysis based on university enrolment data and survey data collected by Lloyd Heinze for Petroleum Engineering and similar degree programmes. Right: IEA analysis based on <u>SPE competency matrices</u>; Okoroafor, E.R., C.P. Offor and E.I. Prince (2022), <u>Mapping Relevant Petroleum Engineering Skillsets for the Transition to Renewable Energy and Sustainable Energy</u>. Competency level: 2 = Awareness; 4 = Knowledge; 6 = Skill; 8 = Expertise.

Characteristics of DE in Future

- Knowledgeable buyer broad range services & technology
- Knowledgeable communicator multiple disciplines
- Well Life Cycle Value Delivery cost (Capex & Opex), revenue (production flow rate and well uptime), speed of delivery
- High utilization of digitalization fast cycle design, plan, execute
- Engineering graduates with added industry courses

Your comments and questions

- john@dewardt.com
- <u>www.dewardt.com</u>
- http://www.linkedin.com/in/johndewardt
- WhatsApp +1 970 846 6571