
# A Calculated Approach for Nudge Optimization Terrell Grayson



### Wellplan Modeling Different Nudge Designs

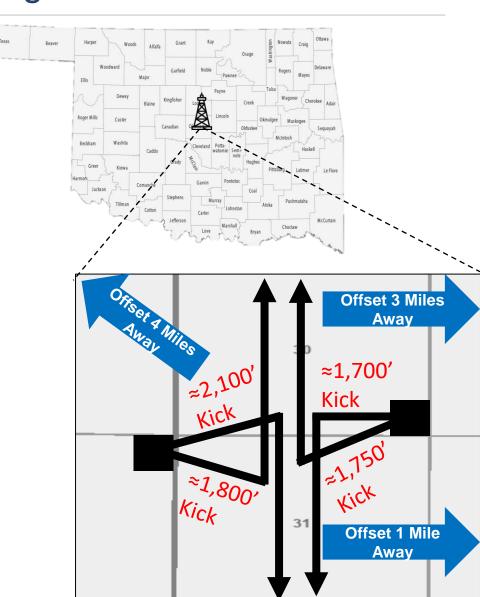


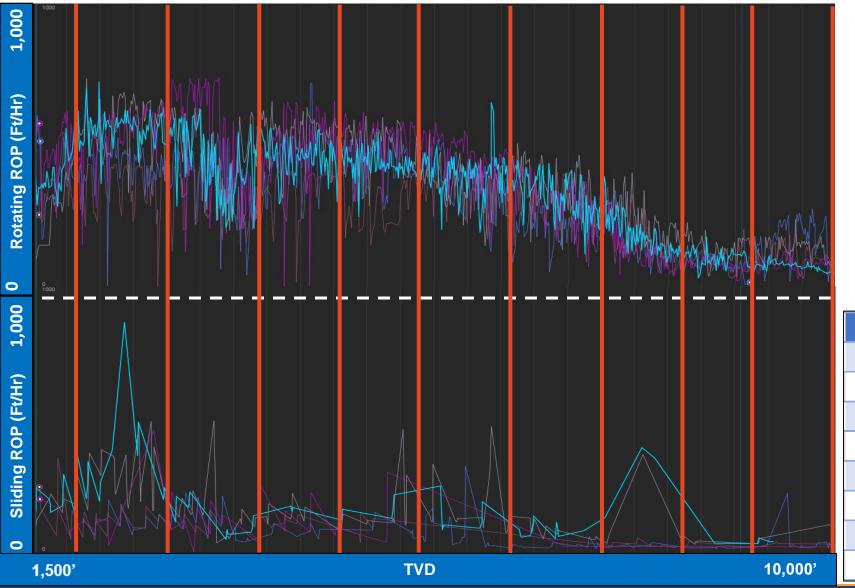
#### Higher Inclination Nudges

#### - PROS

- Faster Sliding At Shallower TVD
- Drop Back To Vertical Sooner For Maximum Rotating Footage

#### - CONS


- Increasing Pick Up Hookload
- Decreasing Slack Off Hookload
  - In Some Cases, S/O Hookload Will Increase with Higher Inclination
- Increasing Torque with Higher Nudge Inclination

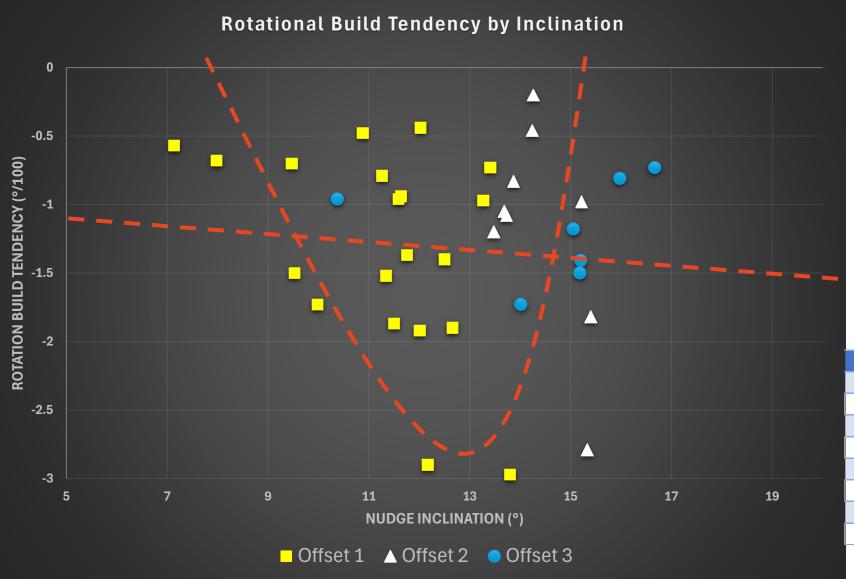

Is there a point of diminishing returns for drilling performance?

At what nudge inclination does the faster drilling begin to diminish?

#### Strategy

- ROP vs Depth
  - Sliding vs Rotating
    - Are There Optimal Spots to Slide?
    - Are There Optimal Spots to Rotate?
- BHA Rotational Tendency
  - How Fast Will It Drop Inclination?
    - Function of Inclination Angle?
    - Function of Formation?
- Motor Yields
  - How Much Sliding Is Necessary to Hold Angle?






- ROP vs Depth
  - Sliding vs Rotating
    - Are There Optimal Spots to Slide?
    - Are There Optimal Spots to Rotate?

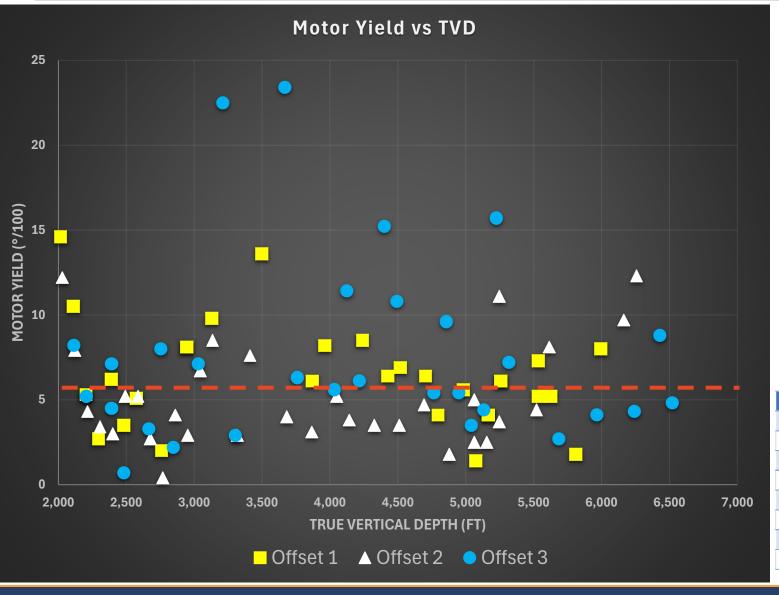
| TVD            | Rotating ROP | Sliding ROP |
|----------------|--------------|-------------|
| 1,600 - 3,000  | 480          | 160         |
| 3,000 - 4,000  | 418          | 88          |
| 4,000 - 5,000  | 404          | 74          |
| 5,000 - 6,000  | 292          | 53          |
| 6,000 - 7,000  | 145          | 27          |
| 7,000 - 8,000  | 108          | 13          |
| 8,000 - 9,000  | 63           | 11          |
| 9,000 - 10,000 | 79           | 49          |



- Strategy
  - ROP vs Depth
    - Sliding vs Rotating
      - Are There Optimal Spots to Slide?
      - Are There Optimal Spots to Rotate?
  - BHA Rotational Tendency
    - How Fast Will It Drop Inclination?
      - Function of Inclination Angle?
      - Function of Formation?



- BHA Rotational Tendency
  - How Fast Will It Drop Inclination?
    - Function of Inclination Angle?
    - Function of Formation?


No Significant Correlation with Inclination

Strong Correlation with Drop and TVD

| TVD            | Rotating ROP | Sliding ROP | Drop Trend |
|----------------|--------------|-------------|------------|
| 1,600 - 3,000  | 480          | 160         | 0.3°       |
| 3,000 - 4,000  | 418          | 88          | 1.8°       |
| 4,000 - 5,000  | 404          | 74          | 3.0°       |
| 5,000 - 6,000  | 292          | 53          | 2.0°       |
| 6,000 - 7,000  | 145          | 27          | 0.3°       |
| 7,000 - 8,000  | 108          | 13          | 0.3°       |
| 8,000 - 9,000  | 63           | 11          | 0.3°       |
| 9,000 - 10,000 | 79           | 49          | 0.3°       |
|                |              |             |            |

Strategy

- BHA Rotational Tendency
  - How Fast Will It Drop Inclination?
    - Function of Inclination Angle?
    - Function of Formation?
- Motor Yields
  - How Much Sliding Is Necessary to Hold Angle?



- Motor Yields
  - How Much Sliding Is Necessary to Hold Angle?

No Significant Correlation with TVD

| TVD            | Rotating ROP | Sliding ROP | Motor Yield | Drop Trend |
|----------------|--------------|-------------|-------------|------------|
| 1,600 - 3,000  | 480          | 160         | 6.0°        | 0.3°       |
| 3,000 - 4,000  | 418          | 88          | 6.0°        | 1.8°       |
| 4,000 - 5,000  | 404          | 74          | 6.0°        | 3.0°       |
| 5,000 - 6,000  | 292          | 53          | 6.0°        | 2.0°       |
| 6,000 - 7,000  | 145          | 27          | 6.0°        | 0.3°       |
| 7,000 - 8,000  | 108          | 13          | 6.0°        | 0.3°       |
| 8,000 - 9,000  | 63           | 11          | 6.0°        | 0.3°       |
| 9,000 - 10,000 | 79           | 49          | 6.0°        | 0.3°       |



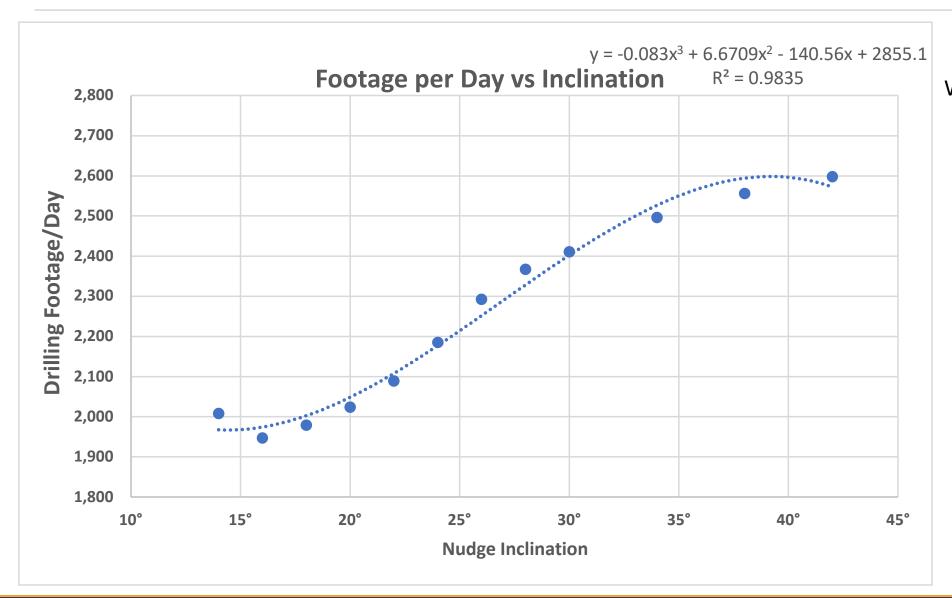
### Okay, So Now What?

| MD (usft) | Inc (°) | Azi (°) | CL (usft) | TVD (usft) |
|-----------|---------|---------|-----------|------------|
| 5,900.0   | 25.00   | 0.00    |           | 5,601      |
| 6,000.0   | 25.00   | 0.00    | 100       | 5,692      |
|           |         |         |           |            |

$$Slide\ Footage = \frac{Drop\ Tendency}{Motor\ Yield + Drop\ Tendency} * CL$$

Slide Footage = 
$$\frac{2.0^{\circ}}{6.0^{\circ} + 2.0^{\circ}} * 100' = 25'$$
 of Sliding

Rotating Footage: 100'CL - 25'Slide = 75'of Rotation


Time to Drill: 
$$\frac{25'Slide}{53 ft/hr} + \frac{75'Rotation}{292 ft/hr} = 0.72 Hours$$

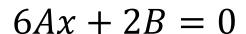
| TVD            | Rotating ROP | Sliding ROP | Motor Yield | Drop Trend |
|----------------|--------------|-------------|-------------|------------|
| 1,600 - 3,000  | 480          | 160         | 6.0°        | 0.3°       |
| 3,000 - 4,000  | 418          | 88          | 6.0°        | 1.8°       |
| 4,000 - 5,000  | 404          | 74          | 6.0°        | 3.0°       |
| 5,000 - 6,000  | 292          | 53          | 6.0°        | 2.0°       |
| 6,000 - 7,000  | 145          | 27          | 6.0°        | 0.3°       |
| 7,000 - 8,000  | 108          | 13          | 6.0°        | 0.3°       |
| 8,000 - 9,000  | 63           | 11          | 6.0°        | 0.3°       |
| 9,000 - 10,000 | 79           | 49          | 6.0°        | 0.3°       |

#### Other Calculations Include

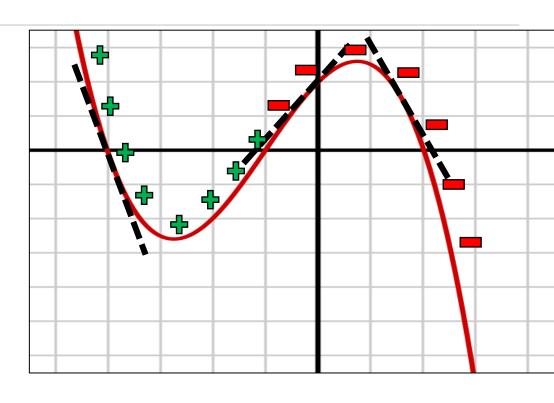
- Toolface Accuracy vs TVD
- Additional Time to Find Toolface
- Connection Times
- Target Window Size

#### **Simulation Results**

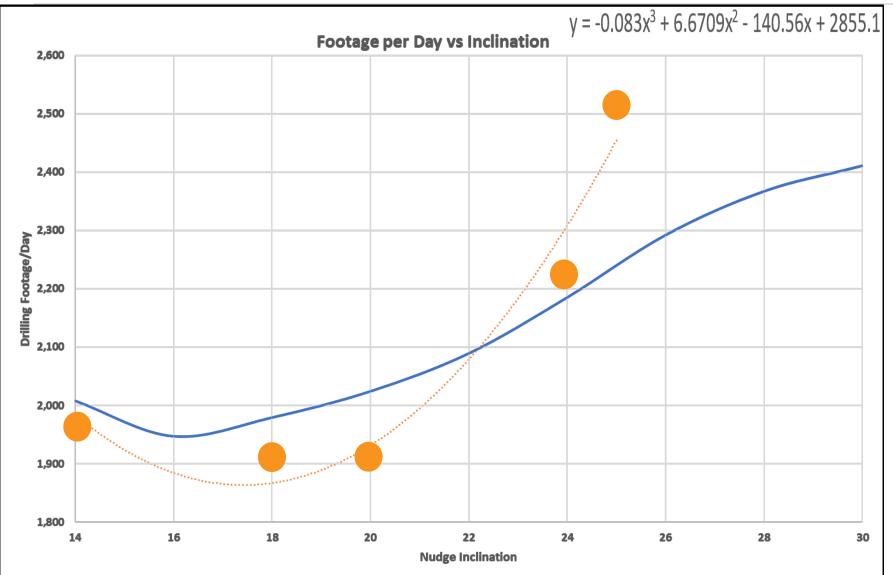



What is the Optimal Inclination?

#### Calculus Refresher


$$y = Ax^3 + Bx^2 + Cx + D$$

$$\frac{dy}{dx} = 3Ax^2 + 2Bx + C = \text{Slope}$$


$$\frac{d^2y}{dx^2} = 6Ax + 2B = Rate Slope Changes$$



$$x = \frac{-B}{3A} = Point of Dimensihing Returns$$



#### Model vs Actual Results



$$x = \frac{-B}{3A}$$

$$x = \frac{-6.67}{3 * (-0.083)}$$

$$x = 26.8^{\circ}$$

#### **Optimal Nudge Angle**

= Actual Footage/Day